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Pegasus is a tool for analyzing transcriptomes of millions of single cells. It is a command line tool, a python package
and a base for Cloud-based analysis workflows.
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CHAPTER
ONE

RELEASE HIGHLIGHTS IN CURRENT STABLE

1.1 1.6.0 April 16, 2022

New Features
* Add support for scVI-tools:
— Function pegasus.run_scvi, which is a wrapper of scVI for data integration.
— Add a dedicated section for scVI method in Pegasus batch correction tutorial.

— Function pegasus.train_scarches_scanvi and pegasus.predict_scarches_scanvi to wrap scArches for transfer
learning on single-cell data labels.

1.1.1 Installation

Pegasus works with Python 3.7, 3.8 and 3.9.

Linux
Ubuntu/Debian
Prerequisites

On Ubuntu/Debian Linux, first install the following dependency by:

sudo apt install build-essential

Next, you can install Pegasus system-wide by PyPI (see Ubuntu/Debian install via PyPI), or within a Miniconda envi-
ronment (see Install via Conda).

To use the Force-directed-layout (FLE) embedding feature, you’ll need Java. You can either install Oracle JDK, or
install OpenJDK which is included in Ubuntu official repository:

sudo apt install default-jdk



https://github.com/scverse/scvi-tools
./api/pegasus.run_scvi.html
https://pegasus-tutorials.readthedocs.io/en/latest/_static/tutorials/batch_correction.html
./api/pegasus.train_scarches_scanvi.html
./api/pegasus.predict_scarches_scanvi.html
https://github.com/theislab/scarches
./installation.html#ubuntu-debian-install-via-pypi
https://www.oracle.com/java/
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Ubuntu/Debian install via PyPI

First, install Python 3, pip tool for Python 3 and Cython package:

sudo apt install python3 python3-pip
python3 -m pip install --upgrade pip
python3 -m pip install cython

Now install Pegasus with the required dependencies via pip:

python3 -m pip install pegasuspy

or install Pegasus with all dependencies:

python3 -m pip install pegasuspy[all]

Alternatively, you can install Pegasus with some of the additional optional dependencies as below:

e torch: This includes harmony-pytorch for data integration and nmf-torch for NMF and iNMF data integra-
tion, both of which uses PyTorch:

python3 -m pip install pegasuspy[torch]

¢ louvain: This includes louvain package, which provides Louvain clustering algorithm, besides the default
Leiden algorithm in Pegasus:

python3 -m pip install pegasuspy[louvain]

Note: If installing from Python 3.9, to install louvain, you’ll need to install the following packages system-wide first
in order to locally compile it:

sudo apt install flex bison libtool

* tsne: This package is to calculate t-SNE plots using a fast algorithm FIt-SNE:

sudo apt install libfftw3-dev
python3 -m pip install pegasuspy[tsne]

forceatlas: This includes forceatlas2-python package, a multi-thread Force Atlas 2 implementation for tra-
jectory analysis:

python3 -m pip install pegasuspy[forceatlas]

scanorama: This includes scanorama package, a widely-used method for batch correction:

python3 -m pip install pegasuspy[scanorama]

e mkl: This includes mk1 package, which improve math routines for science and engineering applications. Notice
that mkl not included in pegasuspy[all] above:

python3 -m pip install pegasuspy[mkl]

 rpy2: This includes rpy2 package, which is used by Pegasus wrapper on R functions, such as fgsea and DESeq2:
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python3 -m pip install pegasuspy[rpy2]

e scvi: This includes scvi-tools package for data integration:

python3 -m pip install pegasuspy[scvi]

Fedora
Prerequisites

On Fedora Linux, first install the following dependency by:

sudo dnf install gcc gcc-c++

Next, you can install Pegasus system-wide by PyPI (see Fedora install via PyPI), or within a Miniconda environment
(see Install via Conda).

To use the Force-directed-layout (FLE) embedding feature, you’ll need Java. You can either install Oracle JDK, or
install OpenJDK which is included in Fedora official repository (e.g. java-latest-openjdk):

sudo dnf install java-latest-openjdk

or other OpenJDK version chosen from the searching result of command:

dnf search openjdk

Fedora install via PyPI

We’ll use Python 3.8 in this tutorial.

First, install Python 3 and pip tool for Python 3:

sudo dnf install python3.8
python3.8 -m ensurepip --user
python3.8 -m pip install --upgrade pip

Now install Pegasus with the required dependencies via pip:

python3.8 -m pip install pegasuspy

or install Pegasus with all dependencies:

python3.8 -m pip install pegasuspy[all]

Alternatively, you can install Pegasus with some of the additional optional dependencies as below:

¢ torch: This includes harmony-pytorch for data integration and nmf-torch for NMF and iNMF data integra-
tion, both of which uses PyTorch:

python3.8 -m pip install pegasuspy[torch]
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louvain: This includes louvain package, which provides Louvain clustering algorithm, besides the default
Leiden algorithm in Pegasus:

python3.8 -m pip install pegasuspy[louvain]

Note:

If installing from Python 3.9, to install louvain, you’ll need to install the following packages system-wide first

in order to locally compile it:

sudo dnf install flex bison libtool

tsne: This package is to calculate t-SNE plots using a fast algorithm FIt-SNE:

sudo apt install libfftw3-dev
python3.8 -m pip install pegasuspy[tsne]

forceatlas: This includes forceatlas2-python package, a multi-thread Force Atlas 2 implementation for tra-
jectory analysis:

python3.8 -m pip install pegasuspy[forceatlas]

scanorama: This includes scanorama package, a widely-used method for batch correction:

python3.8 -m pip install pegasuspy[scanorama]

mkl: This includes mk1 package, which improve math routines for science and engineering applications. Notice
that mkl not included in pegasuspy[all] above:

python3.8 -m pip install pegasuspy[mkl]

rpy2: This includes rpy2 package, which is used by Pegasus wrapper on R functions, such as fgsea and DESeq2:

python3.8 -m pip install pegasuspy[rpy2]

scvi: This includes scvi-tools package for data integration:

python3.8 -m pip install pegasuspy[scvi]

macOS

Prerequisites

First, install Homebrew by following the instruction on its website: https://brew.sh/. Then install the following depen-
dencies:

brew install libomp

And install macOS command line tools:

xcode-select --install
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Next,

you can install Pegasus system-wide by PyPI (see macOS installation via PyPI), or within a Miniconda environ-

ment (see Install via Conda).

To use the Force-directed-layout (FLE) embedding feature, you’ll need Java. You can either install Oracle JDK, or
install OpenJDK via Homebrew:

brew install java

macOS install via PyPI

. You need to install Python and pip tool first:

brew install python3
python3 -m pip install --upgrade pip

Now install Pegasus with required dependencies via pip:

python3 -m pip install pegasuspy

or install Pegasus with all dependencies:

python3 -m pip install pegasuspy[all]

Alternatively, you can install Pegasus with some of the additional optional dependencies as below:

torch: This includes harmony-pytorch for data integration and nmf-torch for NMF and iNMF data integra-
tion, both of which uses PyTorch:

python3 -m pip install pegasuspy[torch]

louvain: This includes louvain package, which provides Louvain clustering algorithm, besides the default
Leiden algorithm in Pegasus:

python3 -m pip install pegasuspy[louvain]

tsne: This package is to calculate t-SNE plots using a fast algorithm FIt-SNE:

sudo apt install libfftw3-dev
python3 -m pip install pegasuspy[tsne]

forceatlas: This includes forceatlas2-python package, a multi-thread Force Atlas 2 implementation for tra-
jectory analysis:

python3 -m pip install pegasuspy[forceatlas]

scanorama: This includes scanorama package, a widely-used method for batch correction:

python3 -m pip install pegasuspy[scanorama]

mkl: This includes mk1 packages, which improve math routines for science and engineering applications. Notice
that mkl not included in pegasuspy[all] above:

python3 -m pip install pegasuspy[mkl]

rpy2: This includes rpy2 package, which is used by Pegasus wrapper on R functions, such as fgsea and DESeq2:
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python3 -m pip install pegasuspy[rpy2]

e scvi: This includes scvi-tools package for data integration:

python3 -m pip install pegasuspy[scvi]

Install via Conda

Alternatively, you can install Pegasus via Conda, which is a separate virtual environment without touching your system-
wide packages and settings.

You can install Anaconda, or Miniconda (a minimal installer of conda). In this tutorial, we’ll use Miniconda.

1.

Download Miniconda installer for your OS. For example, if on 64-bit Linux, then use the following commands
to install Miniconda:

export CONDA_PATH=/home/foo

bash Miniconda3-latest-Linux-x86_64.sh -p $CONDA_PATH/miniconda3
mv Miniconda3-latest-Linux-x86_64.sh $CONDA_PATH/miniconda3
source ~/.bashrc

where /home/foo should be replaced by the directory to which you want to install Miniconda. Similarly for macOS.

2. Create a conda environment for pegasus. This tutorial uses pegasus as the environment name, but you are free

to choose your own:

conda create -n pegasus -y python=3.8

Also notice that Python 3. 8 is used in this tutorial. To choose a different version of Python, simply change the version
number in the command above.

3. Enter pegasus environment by activating:

conda activate pegasus

. Install Pegasus via conda:

conda install -y -c bioconda pegasuspy

. (Optional) Use the following command to add support nmf-torch:

pip install nmf-torch

Enalbe Force Atlas 2 for trajectory analysis:

conda install -y -c bioconda forceatlas2-python

Enable support on scanorama:

conda install -y -c bioconda scanorama

Enable support on fgsea and deseq2 packages:
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conda install -y -c bioconda rpy2 bioconductor-fgsea bioconductor-deseq2

Enable support on scvi-tools:

conda install -y -c conda-forge scvi-tools

Install via Singularity

Singularity is a container engine similar to Docker. Its main difference from Docker is that Singularity can be used
with unprivileged permissions.

Note: Please notice that Singularity Hub has been offline since April 26th, 2021 (see blog post). All existing containers
held there are in archive, and we can no longer push new builds.

So if you fetch the container from Singularity Hub using the following command:

singularity pull shub://klarman-cell-observatory/pegasus

it will just give you a Singularity container of Pegasus v1.2.0 running on Ubuntu Linux 20.04 base with Python 3.8, in
the name pegasus_latest.sif of about 2.4 GB.

On your local machine, first install Singularity, then you can use our Singularity spec file to build a Singularity container
by yourself:

singularity build pegasus.sif Singularity

where Singularity is the spec filename.

After that, you can interact with it by running the following command:

singularity run pegasus.sif

Please refer to Singularity image interaction guide for details.

Development Version

To install Pegasus development version directly from its GitHub respository, please do the following steps:
1. Install prerequisite libraries as mentioned in above sections.
2. Install Git. See here for how to install Git.

3. Use git to fetch repository source code, and install from it:

git clone https://github.com/lilab-bcb/pegasus.git
cd pegasus
pip install -e .[all]

where -e option of pip means to install in editing mode, so that your Pegasus installation will be automatically updated
upon modifications in source code.
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1.1.2 Use Pegasus as a command line tool

Pegasus can be used as a command line tool. Type:

pegasus -h

to see the help information:

Usage:
pegasus <command> [<args>...]
pegasus -h | --help
pegasus -v | --version

pegasus has 9 sub-commands in 6 groups.

* Preprocessing:

aggregate_matrix Aggregate sample count matrices into a single count matrix. It also enables users

to import metadata into the count matrix.

¢ Demultiplexing:

demuxEM Demultiplex cells/nuclei based on DNA barcodes for cell-hashing and nuclei-hashing

data.

* Analyzing:

cluster Perform first-pass analysis using the count matrix generated from ‘aggregate_matrix’. This
subcommand could perform low quality cell filtration, batch correction, variable gene selection,
dimension reduction, diffusion map calculation, graph-based clustering, visualization. The final
results will be written into zarr-formatted file, or h5ad file, which Seurat could load.

de_analysis Detect markers for each cluster by performing differential expression analysis per cluster
(within cluster vs. outside cluster). DE tests include Welch’s t-test, Fisher’s exact test, Mann-
Whitney U test. It can also calculate AUROC values for each gene.

find_markers Find markers for each cluster by training classifiers using Light GBM.

annotate_cluster This subcommand is used to automatically annotate cell types for each cluster
based on existing markers. Currently, it works for human/mouse immune/brain cells, etc.

* Plotting:

plot Make static plots, which includes plotting tSNE, UMAP, and FLE embeddings by cluster labels

and different groups.
* Web-based visualization:
scp_output Generate output files for single cell

e MISC:

portal.

check_indexes Check CITE-Seq/hashing indexes to avoid index collision.

10
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Quick guide

Suppose you have example.csv ready with the following contents:

Sample, Source,Platform,Donor,Reference,Location

sample_1,bone_marrow,NextSeq, 1,GRCh38,/my_dir/sample_1/raw_feature_bc_matrices.h5
sample_2,bone_marrow,NextSeq,2,GRCh38,/my_dir/sample_2/raw_feature_bc_matrices.h5
sample_3,pbmc,NextSeq, 1,GRCh38, /my_dir/sample_3/raw_gene_bc_matrices_h5.h5
sample_4,pbmc,NextSeq,2,GRCh38, /my_dir/sample_4/raw_gene_bc_matrices_h5.h5

You want to analyze all four samples but correct batch effects for bone marrow and pbmc samples separately. You can
run the following commands:

pegasus aggregate_matrix --attributes Source,Platform,Donor example.csv example.aggr
pegasus cluster -p 20 --correct-batch-effect --batch-group-by Source --louvain --umap.
—.example.aggr.zarr.zip example

pegasus de_analysis -p 20 --labels louvain_labels example.zarr.zip example.de.xlsx
pegasus annotate_cluster example.zarr.zip example.anno.txt

pegasus plot compo --groupby louvain_labels --condition Donor example.zarr.zip example.
—,composition.pdf

pegasus plot scatter --basis umap --attributes louvain_labels,Donor example.zarr.zip.
—example.umap.pdf

The above analysis will give you UMAP embedding and Louvain cluster labels in example.zarr.zip, along with
differential expression analysis result stored in example.de.x1sx, and putative cluster-specific cell type annotation
stored in example.anno.txt. You can investigate donor-specific effects by looking at example.composition.pdf.
example.umap.pdf plotted UMAP colored by louvain_labels and Donor info side-by-side.

pegasus aggregate_matrix

The first step for single cell analysis is to generate one count matrix from cellranger’s channel-specific count matrices.
pegasus aggregate_matrix allows aggregating arbitrary matrices with the help of a CSV file.

Type:

pegasus aggregate_matrix -h

to see the usage information:

Usage:

pegasus aggregate_matrix <csv_file> <output_name> [--restriction <restriction>...
— --attributes <attributes> --default-reference <reference> --select-only-singlets --
—min-genes <number>]

pegasus aggregate_matrix -h

e Arguments:

csv_file Input csv-formatted file containing information of each sc/snRNA-seq sample. This file must
contain at least 2 columns - Sample, sample name; and Location, location of the sample count matrix
in either 10x v2/v3, DGE, mtx, csv, tsv or loom format. Additionally, an optional Reference column
can be used to select samples generated from a same reference (e.g. mm10). If the count matrix is in
either DGE, mtx, csv, tsv, or loom format, the value in this column will be used as the reference since
the count matrix file does not contain reference name information. Moreover, the Reference column
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can be used to aggregate count matrices generated from different genome versions or gene annotations
together under a unified reference. For example, if we have one matrix generated from mm9 and the
other one generated from mm10, we can write mm9_10 for these two matrices in their Reference
column. Pegasus will change their references to ‘mm9_10’ and use the union of gene symbols from
the two matrices as the gene symbols of the aggregated matrix. For HDFS files (e.g. 10x v2/v3), the
reference name contained in the file does not need to match the value in this column. In fact, we use
this column to rename references in HDFS5 files. For example, if we have two HDF files, one generated
from mm9 and the other generated from mm10. We can set these two files’ Reference column value
to ‘mm9_10’, which will rename their reference names into mm9_10 and the aggregated matrix will
contain all genes from either mm9 or mm10. This renaming feature does not work if one HDF? file
contain multiple references (e.g. mm10 and GRCh38). csv_file can optionally contain two columns -
nUMI and nGene. These two columns define minimum number of UMIs and genes for cell selection
for each sample. The values in these two columns overwrite the --min-genes and --min-umis
arguments. See below for an example csv:

Sample, Source,Platform,Donor,Reference,Location
sample_1,bone_marrow,NextSeq,1,GRCh38,/my_dir/sample_1/raw_feature_bc_
—matrices.h5

sample_2,bone_marrow,NextSeq,2,GRCh38, /my_dir/sample_2/raw_feature_bc_
—matrices.h5

sample_3,pbmc,NextSeq, 1,GRCh38, /my_dir/sample_3/raw_gene_bc_matrices_h5.h5
sample_4,pbmc,NextSeq,2,GRCh38, /my_dir/sample_4/raw_gene_bc_matrices_h5.h5

output_name The output file name.
* Options:

--restriction <restriction>... Select channels that satisfy all restrictions. Each restriction takes the
format of name:value,. .., ,value or name:~value,..,value, where ~ refers to not. You can specifiy
multiple restrictions by setting this option multiple times.

--attributes <attributes> Specify a comma-separated list of outputted attributes. These attributes
should be column names in the csv file.

--default-reference <reference> If sample count matrix is in either DGE, mtx, csv, tsv or loom
format and there is no Reference column in the csv_file, use <reference> as the reference.

--select-only-singlets If we have demultiplexed data, turning on this option will make pegasus only
include barcodes that are predicted as singlets.

--remap-singlets <remap_string> Remap singlet names using
<remap_string>, where <remap_string> takes the format
“new_name_i:old_name_1,0ld_name_2;new_name_ii:old_name_3;...”. For example,

if we hashed 5 libraries from 3 samples samplel_libl, samplel_lib2, sample2_libl,
sample2_lib2 and sample3, we can remap them to 3 samples using this string: ‘“sam-
plel:samplel_libl,samplel_lib2;sample2:sample2_lib1,sample2_lib2”. In this way, the new
singlet names will be in metadata field with key ‘assignment’, while the old names will be kept
in metadata field with key ‘assignment.orig’.

--subset-singlets <subset_string> If select singlets, only select singlets in the <subset_string>,
which takes the format “namel,name2,...”. Note that if —remap-singlets is specified, subset-
ting happens after remapping. For example, we can only select singlets from sampe 1 and 3
using “samplel,sample3”.

--min-genes <number> Only keep barcodes with at least <ngene> expressed genes.
--max-genes <number> Only keep cells with less than <number> of genes.

--min-umis <number> Only keep cells with at least <number> of UMIs.
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--max-umis <number> Only keep cells with less than <number> of UMISs.

--mito-prefix <prefix> Prefix for mitochondrial genes. If multiple prefixes are provided, separate
them by comma (e.g. “MT-,mt-*).

--percent-mito <percent> Only keep cells with mitochondrial percent less than <percent>%. Only
when both mito_prefix and percent_mito set, the mitochondrial filter will be triggered.

--no-append-sample-name Turn this option on if you do not want to append sample name in front
of each sample’s barcode (concatenated using ‘-°).

-h, --help Print out help information.
 Outputs:
output_name.zarr.zip A zipped Zarr file containing aggregated data.

* Examples:

pegasus aggregate_matrix --restriction Source:BM,CB --restriction Individual:1-8 --
—attributes Source,Platform Manton_count_matrix.csv aggr_data

pegasus demuxEM

Demultiplex cell-hashing/nucleus-hashing data.

Type:

pegasus demuxEM -h

to see the usage information:

Usage:

pegasus demuxEM [options] <input_raw_gene_bc_matrices_h5> <input_hto_csv_file>
—<output_name>

pegasus demuxEM -h | --help

pegasus demuxEM -v | --version

* Arguments:

input_raw_gene_bc_matrices_hS Input raw RNA expression matrix in 10x hdf5 format. It is im-
portant to feed raw (unfiltered) count matrix, as demuxEM uses it to estimate the background
information.

input_hto_csv_file Input HTO (antibody tag) count matrix in CSV format.
output_name Output name. All outputs will use it as the prefix.

* Options:
-p <number>, --threads <number> Number of threads. [default: 1]

--genome <genome> Reference genome name. If not provided, we will infer it from the expression
matrix file.

--alpha-on-samples <alpha> The Dirichlet prior concentration parameter (alpha) on samples. An
alpha value < 1.0 will make the prior sparse. [default: 0.0]

--min-num-genes <number> We only demultiplex cells/nuclei with at least <number> of expressed
genes. [default: 100]
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--min-num-umis <number> We only demultiplex cells/nuclei with at least <number> of UMIs. [de-
fault: 100]

--min-signal-hashtag <count> Any cell/nucleus with less than <count> hashtags from the signal
will be marked as unknown. [default: 10.0]

--random-state <seed> The random seed used in the KMeans algorithm to separate empty ADT
droplets from others. [default: 0]

--generate-diagnostic-plots Generate a series of diagnostic plots, including the background/signal
between HTO counts, estimated background probabilities, HTO distributions of cells and non-
cells etc.

--generate-gender-plot <genes> Generate violin plots using gender-specific genes (e.g. Xist).
<gene> is a comma-separated list of gene names.

-v, --version Show DemuxEM version.
-h, --help Print out help information.
e Qutputs:

output_name_demux.zarr.zip RNA expression matrix with demultiplexed sample identities in Zarr
format.

output_name.out.demuxEM.zarr.zip DemuxEM-calculated results in Zarr format, containing two
datasets, one for HTO and one for RNA.

output_name.ambient_hashtag.hist.pdf Optional output. A histogram plot depicting hashtag dis-
tributions of empty droplets and non-empty droplets.

output_name.background_probabilities.bar.pdf Optional output. A bar plot visualizing the esti-
mated hashtag background probability distribution.

output_name.real_content.hist.pdf Optional output. A histogram plot depicting hashtag distribu-
tions of not-real-cells and real-cells as defined by total number of expressed genes in the RNA
assay.

output_name.rna_demux.hist.pdf Optional output. A histogram plot depicting RNA UMI distri-
bution for singlets, doublets and unknown cells.

output_name.gene_name.violin.pdf Optional outputs. Violin plots depicting gender-specific gene
expression across samples. We can have multiple plots if a gene list is provided in ‘—generate-
gender-plot’ option.

» Examples:

pegasus demuxEM -p 8 --generate-diagnostic-plots sample_raw_gene_bc_matrices.h5..
—sample_hto.csv sample_output

14 Chapter 1. Release Highlights in Current Stable



Pegasus Documentation, Release 1.6.0

pegasus cluster

Once we collected the count matrix in 10x (example_10x.h5) or Zarr (example.zarr.zip) format, we can perform
single cell analysis using pegasus cluster.

Type:

pegasus cluster -h

to see the usage information:

Usage:
pegasus cluster [options] <input_file> <output_name>
pegasus cluster -h

* Arguments:

input_file Input file in either ‘zarr’, ‘h5ad’, ‘loom’, ‘10x’, ‘mtx’, ‘csv’, ‘tsv’ or ‘fcs’ format. If first-
pass analysis has been performed, but you want to run some additional analysis, you could also
pass a zarr-formatted file.

output_name Output file name. All outputs will use it as the prefix.
» Options:
-p <number>, --threads <number> Number of threads. [default: 1]

--processed Input file is processed. Assume quality control, data normalization and log transforma-
tion, highly variable gene selection, batch correction/PCA and kNN graph building is done.

--channel <channel_attr> Use <channel_attr> to create a ‘Channel’ column metadata field. All
cells within a channel are assumed to come from a same batch.

--black-list <black_list> Cell barcode attributes in black list will be popped out. Format is
“attrl,attr2,. .. ,attrn”.

--select-singlets Only select DemuxEM-predicted singlets for analysis.

--remap-singlets <remap_string> Remap singlet names using
<remap_string>, where <remap_string> takes the format
“new_name_i:old_name_1,0ld_name_ 2;new_name_ii:old_name_3;...”. For example,

if we hashed 5 libraries from 3 samples samplel_libl, samplel_lib2, sample2_libl,
sample2_lib2 and sample3, we can remap them to 3 samples using this string: ‘“‘sam-
plel:samplel_libl,samplel_lib2;sample2:sample2_lib1,sample2_lib2”. In this way, the new
singlet names will be in metadata field with key ‘assignment’, while the old names will be kept
in metadata field with key ‘assignment.orig’.

--subset-singlets <subset_string> If select singlets, only select singlets in the <subset_string>,
which takes the format “namel,name2,...”. Note that if —remap-singlets is specified, subset-
ting happens after remapping. For example, we can only select singlets from sampe 1 and 3
using “samplel,sample3”.

--genome <genome_name> If sample count matrix is in either DGE, mtx, csv, tsv or loom format,
use <genome_name> as the genome reference name.

--focus <keys> Focus analysis on Unimodal data with <keys>. <keys> is a comma-separated list of
keys. If None, the self._selected will be the focused one.

--append <key> Append Unimodal data <key> to any <keys> in --focus.

--output-loom Output loom-formatted file.
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--output-hSad Output h5ad-formatted file.

--min-genes <number> Only keep cells with at least <number> of genes. [default: 500]
--max-genes <number> Only keep cells with less than <number> of genes. [default: 6000]
--min-umis <number> Only keep cells with at least <number> of UMIs.

--max-umis <number> Only keep cells with less than <number> of UMISs.

--mito-prefix <prefix> Prefix for mitochondrial genes. Can provide multiple prefixes for multiple
organisms (e.g. “MT-" means to use “MT-*, “GRCh38:MT-,mm10:mt-,MT-" means to use “MT-
” for GRCh38, “mt-" for mm10 and “MT-" for all other organisms). [default: GRCh38:MT-
,mm10:mt-,MT-]

--percent-mito <ratio> Only keep cells with mitochondrial percent less than <percent>%. [default:
20.0]

--gene-percent-cells <ratio> Only use genes that are expressed in at least <percent>% of cells to
select variable genes. [default: 0.05]

--output-filtration-results Output filtration results as a spreadsheet.
--plot-filtration-results Plot filtration results as PDF files.

--plot-filtration-figsize <figsize> Figure size for filtration plots. <figsize> is a comma-separated list
of two numbers, the width and height of the figure (e.g. 6,4).

--min-genes-before-filtration <number> If raw data matrix is input, empty barcodes will dominate
pre-filtration statistics. To avoid this, for raw data matrix, only consider barcodes with at lease
<number> genes for pre-filtration condition. [default: 100]

--counts-per-cell-after <number> Total counts per cell after normalization. [default: 1e5]

--select-hvf-flavor <flavor> Highly variable feature selection method. <flavor> can be ‘pegasus’ or
‘Seurat’. [default: pegasus]

--select-hvf-ngenes <nfeatures> Select top <nfeatures> highly variable features. If <flavor> is ‘Seu-
rat’ and <ngenes> is ‘None’, select HVGs with z-score cutoff at 0.5. [default: 2000]

--no-select-hvf Do not select highly variable features.
--plot-hvf Plot highly variable feature selection.
--correct-batch-effect Correct for batch effects.

--correction-method <method> Batch correction method, can be either ‘L/S’ for location/scale ad-
justment algorithm (Li and Wong. The analysis of Gene Expression Data 2003), ‘harmony’ for
Harmony (Korsunsky et al. Nature Methods 2019), ‘scanorama’ for Scanorama (Hie et al. Na-
ture Biotechnology 2019) or ‘inmf” for integrative NMF (Yang and Michailidis Bioinformatics
2016, Welch et al. Cell 2019, Gao et al. Natuer Biotechnology 2021) [default: harmony]

--batch-group-by <expression> Batch correction assumes the differences in gene expression
between channels are due to batch effects. However, in many cases, we know that
channels can be partitioned into several groups and each group is biologically differ-
ent from others. In this case, we will only perform batch correction for channels
within each group. This option defines the groups. If <expression> is None, we as-
sume all channels are from one group. Otherwise, groups are defined according to
<expression>. <expression> takes the form of either ‘attr’, or ‘attrl+attr2+...+attrn’, or
‘attr=valuell,...,valueln_1;value2l,... ,value2n_2;...;valueml,...,valuemn_m’. In the first
form, ‘attr’ should be an existing sample attribute, and groups are defined by ‘attr’. In the second
form, ‘attrl’,...attrn’ are n existing sample attributes and groups are defined by the Cartesian
product of these n attributes. In the last form, there will be m + 1 groups. A cell belongs to group
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i (i > 0) if and only if its sample attribute ‘attr’ has a value among valueil,...,valuein_i. A cell
belongs to group 0 if it does not belong to any other groups.

--harmony-nclusters <nclusters> Number of clusters used for Harmony batch correction.
--inmf-lambda <lambda> Coefficient of regularization for iNMF. [default: 5.0]
--random-state <seed> Random number generator seed. [default: O]

--temp-folder <temp_folder> Joblib temporary folder for memmapping numpy arrays.

--calc-signature-scores <sig_list> Calculate signature scores for gene sets in <sig_list>. <sig_list>
is a comma-separated list of strings. Each string should either be a <GMT_file> or
one of ‘cell_cycle_human’, ‘cell_cycle_mouse’, ‘gender_human’, ‘gender_mouse’, ‘mitochon-
drial_genes_human’, ‘mitochondrial_genes_mouse’, ‘ribosomal_genes_human’ and ‘riboso-
mal_genes_mouse’.

--pca-n <number> Number of principal components. [default: 50]
--nmf Compute nonnegative matrix factorization (NMF) on highly variable features.

--nmf-n <number> Number of NMF components. IF iNMF is used for batch correction, this pa-
rameter also sets iNMF number of components. [default: 20]

--knn-K <number> Number of nearest neighbors for building kNN graph. [default: 100]

--knn-full-speed For the sake of reproducibility, we only run one thread for building kNN indices.
Turn on this option will allow multiple threads to be used for index building. However, it will
also reduce reproducibility due to the racing between multiple threads.

--kBET Calculate kBET.

--kBET-batch <batch> kBET batch keyword.

--kBET-alpha <alpha> kBET rejection alpha. [default: 0.05]

--kBET-K <K> kBET K. [default: 25]

--diffmap Calculate diffusion maps.

--diffmap-ndc <number> Number of diffusion components. [default: 100]

--diffmap-solver <solver> Solver for eigen decomposition, either ‘randomized’ or ‘eigsh’. [default:
eigsh]

--diffmap-maxt <max_t> Maximum time stamp to search for the knee point. [default: 5000]

--calculate-pseudotime <roots> Calculate diffusion-based pseudotimes based on <roots>. <roots>
should be a comma-separated list of cell barcodes.

--louvain Run louvain clustering algorithm.

--louvain-resolution <resolution> Resolution parameter for the louvain clustering algorithm. [de-
fault: 1.3]

--louvain-class-label <label> Louvain cluster label name in result. [default: louvain_labels]
--leiden Run leiden clustering algorithm.

--leiden-resolution <resolution> Resolution parameter for the leiden clustering algorithm. [default:
1.3]

--leiden-niter <niter> Number of iterations of running the Leiden algorithm. If <niter> is negative,
run Leiden iteratively until no improvement. [default: -1]

--leiden-class-label <label> Leiden cluster label name in result. [default: leiden_labels]
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--spectral-louvain Run spectral-louvain clustering algorithm.

--spectral-louvain-basis <basis> Basis used for KMeans clustering. Can be ‘pca’ or ‘diffmap’. If
‘diffmap’ is not calculated, use ‘pca’ instead. [default: diffmap]

--spectral-louvain-nclusters <number> Number of first level clusters for Kmeans. [default: 30]

--spectral-louvain-nclusters2 <number> Number of second level clusters for Kmeans. [default:
50]

--spectral-louvain-ninit <number> Number of Kmeans tries for first level clustering. Default is the
same as scikit-learn Kmeans function. [default: 10]

--spectral-louvain-resolution <resolution>. Resolution parameter for louvain. [default: 1.3]

--spectral-louvain-class-label <label> Spectral-louvain label name in result. [default: spec-
tral_louvain_labels]

--spectral-leiden Run spectral-leiden clustering algorithm.

--spectral-leiden-basis <basis> Basis used for KMeans clustering. Can be ‘pca’ or ‘diffmap’. If
‘diffmap’ is not calculated, use ‘pca’ instead. [default: diffmap]

--spectral-leiden-nclusters <number> Number of first level clusters for Kmeans. [default: 30]
--spectral-leiden-nclusters2 <number> Number of second level clusters for Kmeans. [default: 50]

--spectral-leiden-ninit <number> Number of Kmeans tries for first level clustering. Default is the
same as scikit-learn Kmeans function. [default: 10]

--spectral-leiden-resolution <resolution> Resolution parameter for leiden. [default: 1.3]

--spectral-leiden-class-label <label> Spectral-leiden label name in result.  [default: spec-
tral_leiden_labels]

--tsne Run FIt-SNE package to compute t-SNE embeddings for visualization.
--tsne-perplexity <perplexity> t-SNE’s perplexity parameter. [default: 30]

--tsne-initialization <choice> <choice> can be either ‘random’ or ‘pca’. ‘random’ refers to random
initialization. ‘pca’ refers to PCA initialization as described in (CITE Kobak et al. 2019) [default:

pea]
--umap Run umap for visualization.
--umap-K <K> K neighbors for umap. [default: 15]
--umap-min-dist <number> Umap parameter. [default: 0.5]
--umap-spread <spread> Umap parameter. [default: 1.0]
--fle Run force-directed layout embedding.
--fle-K <K> K neighbors for building graph for FLE. [default: 50]
--fle-target-change-per-node <change> Target change per node to stop forceAtlas2. [default: 2.0]

--fle-target-steps <steps> Maximum number of iterations before stopping the forceAtlas2 algoritm.
[default: 5000]

--fle-memory <memory> Memory size in GB for the Java FA2 component. [default: 8]

--net-down-sample-fraction <frac> Down sampling fraction for net-related visualization. [default:
0.1]

--net-down-sample-K <K> Use <K> neighbors to estimate local density for each data point for down
sampling. [default: 25]
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--net-down-sample-alpha <alpha> Weighted down sample, proportional to radius”*alpha. [default:
1.0]

--net-regressor-L2-penalty <value> L2 penalty parameter for the deep net regressor. [default: 0.1]
--net-umap Run net umap for visualization.

--net-umap-polish-learning-rate <rate> After running the deep regressor to predict new coordi-
nate, what is the learning rate to use to polish the coordinates for UMAP. [default: 1.0]

--net-umap-polish-nepochs <nepochs> Number of iterations for polishing UMAP run. [default:
40]

--net-umap-out-basis <basis> Output basis for net-UMAP. [default: net_umap]
--net-fle Run net FLE.

--net-fle-polish-target-steps <steps> After running the deep regressor to predict new coordinate,
what is the number of force atlas 2 iterations. [default: 1500]

--net-fle-out-basis <basis> Output basis for net-FLE. [default: net_fle]

--infer-doublets Infer doublets using the method described here. Obs attribute ‘doublet_score’ stores
Scrublet-like doublet scores and attribute ‘demux_type’ stores ‘doublet/singlet’ assignments.

--expected-doublet-rate <rate> The expected doublet rate per sample. By default, calculate the
expected rate based on number of cells from the 10x multiplet rate table.

--dbl-cluster-attr <attr> <attr> refers to a cluster attribute containing cluster labels (e.g. ‘lou-
vain_labels’). Doublet clusters will be marked based on <attr> with the following criteria: pass-
ing the Fisher’s exact test and having >= 50% of cells identified as doublets. By default, the first
computed cluster attribute in the list of leiden, louvain, spectral_ledein and spectral_louvain is
used.

--citeseq Input data contain both RNA and CITE-Seq modalities. This will set —focus to be the RNA
modality and —append to be the CITE-Seq modality. In addition, ‘ADT-* will be added in front
of each antibody name to avoid name conflict with genes in the RNA modality.

--citeseq-umap For high quality cells kept in the RNA modality, generate a UMAP based on their
antibody expression.

--citeseq-umap-exclude <list> <list> is a comma-separated list of antibodies to be excluded from
the UMAP calculation (e.g. Mouse-IgG1,Mouse-IgG2a).

-h, --help Print out help information.
e Qutputs:

output_name.zarr.zip Output file in Zarr format. To load this file in python, use import pegasus;
data = pegasus.read_input('output_name.zarr.zip'). The log-normalized expres-
sion matrix is stored in data.X as a CSR-format sparse matrix. The obs field contains
cell related attributes, including clustering results. For example, data.obs_names records
cell barcodes; data.obs['Channel'] records the channel each cell comes from; data.
obs['n_genes'], data.obs['n_counts'], and data.obs['percent_mito'] record the
number of expressed genes, total UMI count, and mitochondrial rate for each cell respec-
tively; data.obs['louvain_labels'] and data.obs['approx_louvain_labels'] record
each cell’s cluster labels using different clustring algorithms; data.obs['pseudo_time']
records the inferred pseudotime for each cell. The var field contains gene related attributes.
For example, data.var_names records gene symbols, data.var['gene_ids'] records En-
sembl gene IDs, and data.var['selected'] records selected variable genes. The obsm
field records embedding coordiates. For example, data.obsm['X_pca'] records PCA coor-
dinates, data.obsm['X_tsne'] records tSNE coordinates, data.obsm['X_umap'] records
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UMAP coordinates, data.obsm['X_diffmap'] records diffusion map coordinates, and data.
obsm['X_fle'] records the force-directed layout coordinates from the diffusion compo-
nents. The uns field stores other related information, such as reference genome (data.
uns[ 'genome']). This file can be loaded into R and converted into a Seurat object.

output_name.<group>.h5ad Optional output. Only exists if ‘—output-h5ad’ is set. Results in h5ad
format per focused <group>. This file can be loaded into R and converted into a Seurat object.

output_name.<group>.loom Optional output. Only exists if ‘—output-loom’ is set. Results in loom
format per focused <group>.

output_name.<group>.filt.xIsx Optional output. Only exists if ‘—output-filtration-results’ is set. Fil-
tration statistics per focused <group>. This file has two sheets — Cell filtration stats and Gene
filtration stats. The first sheet records cell filtering results and it has 10 columns: Channel, chan-
nel name; kept, number of cells kept; median_n_genes, median number of expressed genes in kept
cells; median_n_umis, median number of UMIs in kept cells; median_percent_mito, median mi-
tochondrial rate as UMIs between mitochondrial genes and all genes in kept cells; filt, number
of cells filtered out; total, total number of cells before filtration, if the input contain all barcodes,
this number is the cells left after ‘—min-genes-on-raw’ filtration; median_n_genes_before, median
expressed genes per cell before filtration; median_n_umis_before, median UMIs per cell before
filtration; median_percent_mito_before, median mitochondrial rate per cell before filtration. The
channels are sorted in ascending order with respect to the number of kept cells per channel. The
second sheet records genes that failed to pass the filtering. This sheet has 3 columns: gene, gene
name; n_cells, number of cells this gene is expressed; percent_cells, the fraction of cells this
gene is expressed. Genes are ranked in ascending order according to number of cells the gene
is expressed. Note that only genes not expressed in any cell are removed from the data. Other
filtered genes are marked as non-robust and not used for TPM-like normalization.

output_name.<group>.filt.gene.pdf Optional output. Only exists if ‘—plot-filtration-results’ is set.
This file contains violin plots contrasting gene count distributions before and after filtration per
channel per focused <group>.

output_name.<group>.filt. UMLpdf Optional output. Only exists if ‘—plot-filtration-results’ is set.
This file contains violin plots contrasting UMI count distributions before and after filtration per
channel per focused <group>.

output_name.<group>.filt.mito.pdf Optional output. Only exists if ‘—plot-filtration-results’ is set.
This file contains violin plots contrasting mitochondrial rate distributions before and after filtra-
tion per channel per focused <group>.

output_name.<group>.hvf.pdf Optional output. Only exists if ‘—plot-hvf’ is set. This file contains
a scatter plot describing the highly variable gene selection procedure per focused <group>.

output_name.<group>.<channel>.dbl.png Optional output. Only exists if ‘~infer-doublets’ is set.
Each figure consists of 4 panels showing diagnostic plots for doublet inference. If there is only
one channel in <group>, file name becomes output_name.<group>.dbl.png.

» Examples:

pegasus cluster -p 20 --correct-batch-effect --louvain --tsne example_10x.h5..
—,example_out
pegasus cluster -p 20 --leiden --umap --net-fle example.zarr.zip example_out

20

Chapter 1. Release Highlights in Current Stable



Pegasus Documentation, Release 1.6.0

pegasus de_analysis

Once we have the clusters, we can detect markers using pegasus de_analysis. We will calculate Mann-Whitney U
test and AUROC values by default.

Type:

pegasus de_analysis -h

to see the usage information:

Usage:

pegasus de_analysis [options] (--labels <attr>) <input_data_file> <output_
—»spreadsheet>

pegasus de_analysis -h

* Arguments:
input_data_file Single cell data with clustering calculated. DE results would be written back.
output_spreadsheet Output spreadsheet with DE results.

» Options:
--labels <attr> <attr> used as cluster labels. [default: louvain_labels]
-p <threads> Use <threads> threads. [default: 1]
--de-key <key> Store DE results into AnnData varm with key = <key>. [default: de_res]
--t Calculate Welch’s t-test.
--fisher Calculate Fisher’s exact test.
--temp-folder <temp_folder> Joblib temporary folder for memmapping numpy arrays.
--alpha <alpha> Control false discovery rate at <alpha>. [default: 0.05]

--ndigits <ndigits> Round non p-values and g-values to <ndigits> after decimal point in the excel.
[default: 3]

--quiet Do not show detailed intermediate outputs.
-h, --help Print out help information.
e Qutputs:

input_data_file DE results would be written back to the ‘varm’ field with name set by ‘—de-key
<key>’.

output_spreadsheet An excel spreadsheet containing DE results. Each cluster has two tabs in the
spreadsheet. One is for up-regulated genes and the other is for down-regulated genes. If DE
was performed on conditions within each cluster. Each cluster will have number of conditions
tabs and each condition tab contains two spreadsheet: up for up-regulated genes and down for
down-regulated genes.

* Examples:

pegasus de_analysis -p 26 --labels louvain_labels --t --fisher example.zarr.zip.
—,example_de.xlsx
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pegasus find_markers

Once we have the DE results, we can optionally find cluster-specific markers with gradient boosting using pegasus
find_markers.

Type:

pegasus find_markers -h

to see the usage information:

Usage:
pegasus find_markers [options] <input_data_file> <output_spreadsheet>
pegasus find_markers -h

* Arguments:
input_h5ad_file Single cell data after running the de_analysis.
output_spreadsheet Output spreadsheet with LightGBM detected markers.
* Options:
-p <threads> Use <threads> threads. [default: 1]
--labels <attr> <attr> used as cluster labels. [default: louvain_labels]
--de-key <key> Key for storing DE results in ‘varm’ field. [default: de_res]
--remove-ribo Remove ribosomal genes with either RPL or RPS as prefixes.

--min-gain <gain> Only report genes with a feature importance score (in gain) of at least <gain>.
[default: 1.0]

--random-state <seed> Random state for initializing LightGBM and KMeans. [default: 0]
-h, --help Print out help information.
e Qutputs:

output_spreadsheet An excel spreadsheet containing detected markers. Each cluster has one tab
in the spreadsheet and each tab has six columns, listing markers that are strongly up-regulated,
weakly up-regulated, down-regulated and their associated LightGBM gains.

* Examples:

pegasus find_markers --labels louvain_labels --remove-ribo --min-gain 10.0 -p 10.
—.example.zarr.zip example.markers.xlsx

pegasus annotate_cluster

Once we have the DE results, we could optionally identify putative cell types for each cluster using pegasus
annotate_cluster. This command has two forms: the first form generates putative annotations, and the second
form write annotations into the Zarr object.

Type:

pegasus annotate_cluster -h
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to see the usage information:

Usage:

pegasus annotate_cluster [--marker-file <file> --de-test <test> --de-alpha
—<alpha> --de-key <key> --minimum-report-score <score> --do-not-use-non-de-genes]
—<input_data_file> <output_file>

pegasus annotate_cluster --annotation <annotation_string> <input_data_file>

pegasus annotate_cluster -h

e Arguments:
input_data_file Single cell data with DE analysis done by pegasus de_analysis.
output_file Output annotation file.

* Options:

--markers <str> <str> is a comma-separated list. Each element in the
list either refers to a JSON file containing legacy markers, or ‘hu-
man_immune’/’mouse_immune’/’human_brain’/’mouse_brain’/’human_lung’ for predefined
markers. [default: human_immune]

--de-test <test> DE test to use to infer cell types. [default: mwu]
--de-alpha <alpha> False discovery rate to control family-wise error rate. [default: 0.05]
--de-key <key> Keyword where the DE results store in ‘varm’ field. [default: de_res]

--minimum-report-score <score> Minimum cell type score to report a potential cell type. [default:
0.5]

--do-not-use-non-de-genes Do not count non DE genes as down-regulated.

--annotation <annotation_string> Write cell type annotations in <annotation_string> into <in-
put_data_file>. <annotation_string> has this format: 'anno_name:clust_name:anno_1;
anno_2;...;anno_n', where anno_name is the annotation attribute in the Zarr object,
clust_name is the attribute with cluster ids, and anno_1i is the annotation for cluster i.

-h, --help Print out help information.
* Outputs:

output_file This is a text file. For each cluster, all its putative cell types are listed in descending order
of the cell type score. For each putative cell type, all markers support this cell type are listed. If
one putative cell type has cell subtypes, all subtypes will be listed under this cell type.

* Examples:

pegasus annotate_cluster example.zarr.zip example.anno.txt

pegasus annotate_cluster --markers human_immune,human_lung lung.zarr.zip lung.anno.
—1txXt

pegasus annotate_cluster --annotation "anno:louvain_labels:T cells;B cells;NK cells;
—Monocytes" example.zarr.zip
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pegasus plot

We can make a variety of figures using pegasus plot.

Type:

pegasus plot -h

to see the usage information:

Usage:

pegasus plot [options] [--restriction <restriction>...] [--palette <palette>...]
—<plot_type> <input_file> <output_file>

pegasus plot -h

* Arguments:

plot_type Plot type, either ‘scatter’ for scatter plots, ‘compo’ for composition plots, or ‘wordcloud’
for word cloud plots.

input_file Single cell data in Zarr or H5ad format.
output_file Output image file.

» Options:
--dpi <dpi> DPI value for the figure. [default: 500]

--basis <basis> Basis for 2D plotting, chosen from ‘tsne’, ‘fitsne’, ‘umap’, ‘pca’, ‘fle’, ‘net_tsne’,
‘net_umap’ or ‘net_fle’. [default: umap]

--attributes <attrs> <attrs> is a comma-separated list of attributes to color the basis. This option is
only used in ‘scatter’.

--restriction <restriction>... Set restriction if you only want to plot a subset of data. Multiple
<restriction> strings are allowed. Each <restriction> takes the format of ‘attr:value,value’, or
‘attr:~value,value..” which means excluding values. This option is used in ‘composition’ and
‘scatter’.

--alpha <alpha> Point transparent parameter. Can be a single value or a list of values separated by
comma used for each attribute in <attrs>.

--legend-loc <str> Legend location, can be either “right margin” or “on data”. If a list is provided,
set ‘legend_loc’ for each attribute in ‘attrs’ separately. [default: “right margin’]

--palette <str> Used for setting colors for every categories in categorical attributes. Multiple
<palette> strings are allowed. Each string takes the format of ‘attr:colorl,color2,... colorn’.
‘attr’ is the categorical attribute and ‘colorl’ - ‘colorn’ are the colors for each category in
‘attr’ (e.g. ‘cluster_labels:black,blue,red,... ,yellow’). If there is only one categorical attribute
in ‘attrs’, palletes can be set as a single string and the ‘attr’ keyword can be omitted (e.g.
“blue,yellow,red”).

--show-background Show points that are not selected as gray.
--nrows <nrows> Number of rows in the figure. If not set, pegasus will figure it out automatically.
--ncols <ncols> Number of columns in the figure. If not set, pegasus will figure it out automatically.

--panel-size <sizes> Panel size in inches, w x h, separated by comma. Note that margins are not
counted in the sizes. For composition, default is (6, 4). For scatter plots, default is (4, 4).

--left <left> Figure’s left margin in fraction with respect to panel width.
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--bottom <bottom> Figure’s bottom margin in fraction with respect to panel height.
--wspace <wspace> Horizontal space between panels in fraction with respect to panel width.
--hspace <hspace> Vertical space between panels in fraction with respect to panel height.
--groupby <attr> Use <attr> to categorize the cells for the composition plot, e.g. cell type.

--condition <attr> Use <attr> to calculate frequency within each category defined by ‘—groupby’ for
the composition plot, e.g. donor.

--style <style> Composition plot styles. Can be either ‘frequency’ or ‘normalized’. [default: nor-
malized]

--factor <factor> Factor index (column index in data.uns[*W’]) to be used to generate word cloud
plot.

--max-words <max_words> Maximum number of genes to show in the image. [default: 20]
-h, --help Print out help information.

Examples:

pegasus plot scatter --basis tsne --attributes louvain_labels,Donor example.h5ad scatter.
—pdf

pegasus plot compo --groupby louvain_labels --condition Donor example.zarr.zip compo.pdf
pegasus plot wordcloud --factor 0 example.zarr.zip word_cloud_0.pdf

pegasus scp_output

If we want to visualize analysis results on single cell portal (SCP), we can generate required files for SCP using this
subcommand.

Type:

pegasus scp_output -h

to see the usage information:

Usage:
pegasus scp_output <input_data_file> <output_name>
pegasus scp_output -h

* Arguments:
input_data_file Analyzed single cell data in zarr format.
output_name Name prefix for all outputted files.
* Options:
--dense Output dense expression matrix instead.
--round-to <ndigit> Round expression to <ndigit> after the decimal point. [default: 2]
-h, --help Print out help information.
* Outputs:

output_name.scp.metadata.txt, output_name.scp.barcodes.tsv, output_name.scp.genes.tsv, output_name.scp.matrix.I
Files that single cell portal needs.
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» Examples:

pegasus scp_output example.zarr.zip example

pegasus check_indexes

If we run CITE-Seq or any kind of hashing, we need to make sure that the library indexes of CITE-Seq/hashing do not
collide with 10x’s RNA indexes. This command can help us to determine which 10x index sets we should use.

Type:

pegasus check_indexes -h

to see the usage information:

Usage:

pegasus check_indexes [--num-mismatch <mismatch> --num-report <report>] <index_
—~file>

pegasus check_indexes -h

e Arguments:
index_file Index file containing CITE-Seq/hashing index sequences. One sequence per line.
» Options:
--num-mismatch <mismatch> Number of mismatch allowed for each index sequence. [default: 1]

--num-report <report> Number of valid 10x indexes to report. Default is to report all valid indexes.
[default: 9999]

-h, --help Print out help information.
* Outputs:
Up to <report> number of valid 10x indexes will be printed out to standard output.

* Examples:

pegasus check_indexes --num-report 8 index_file.txt

1.1.3 Use Pegasus on Terra Notebook

You need to first have a Terra account.

1. Start Notebook Runtime on Terra

The first time when you use Terra notebook, you need to create a Cloud Environment.

On the top-right panel of your workspace, click the following button within red circle:

Cloud Environmen!
= None

Then click the CUSTOMIZE button shown in red regtangle:
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Then you’ll need to set the configuration of your cloud environment in the pop-out dialog (see image below):

Cloud Environment x

A cloud environment consists of application configuration, cloud compute and persistent
disk(s).

Use default environment CREATE

e Default: (GATK 4.1.4.1, Python 3.7.10, R 4.0.5)
What's installed on this environment?

* Default compute size of 1 CPU(s), 3.75 GB memory, and your
existing 50 GB persistent disk

e Learn more about Persistent disks and where your disk is

mounted

Running cloud compute cost Paused cloud compute cost Persistent disk cost

$0.06 per hr < $0.01 per hr $2.00 per month
Create custom environment ‘ CUSTOMIZE

DELETE PERSISTENT DISK

1.1. 1.6.0 April 16, 2022
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Cloud Environment X
A cloud environment consists of application configuration, cloud compute and persistent
disk(s).

Running cloud compute cost Paused cloud compute cost Persistent disk cost

$0.06 per hr < $0.01 per hr $2.00 per month

Application configuration @

Default: (CGATK 4.2.0.0, Python 3.7.10,R 4.1.0) v

What's installed on this environment? Updated: Jul 19, 2021
Version: 2.0.1

Cloud compute profile

CPUs Memory (GB) 375 wv

[] Enable GPUs Learn more about GPU cost and restrictions. &

Startup script

(o

Compute type

{ Standard VM v

Persistent disk size (GB)

Persistent disks store analysis data. Learn more about persistent disks and where
your disk is mounted.

50 ¢

CREATE

1.1. Create from Terra official environment

Terra team maintains a list of cloud environments for users to quickly set up their own. In this way, you’ll use the most
recent stable Pegasus cloud environment.

In Application configuration field, select Pegasus from the drop-down menu:
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Application configuration (5 ]

Default: (CATK 4.2.0.0, Python 3.7.10, R 4.1.0) v

Default: (GATK 4.2.0.0, Python 3.7.10, R 4.1.0)

Legacy GATK (GATK 4.1.4.1, Python 3.7.8, R 4.0.2)

Legacy R/ Bioconductor (R 4.0.5, Bioconductor 3.12, Python 3.8.5)
COMMUNITY-MAINTAINED JUPYTER ENVIRONMENTS (VERIFIED PARTNERS)

Pegasus (Pegasuspy 1.4.3, Python 3.7.10, harmony-pytorch 0.1.6, nmf-torch
0.1.1)

COMMUNITY-MAINTAINED RSTUDIO ENVIRONMENTS (VERIFIED PARTNERS)
RStudio (R 4.1.0, Bioconductor 3.13.0, Python 3.8.5)
OTHER ENVIRONMENTS

Custom Environment

In case you are interested in looking at which packages and tools are included in the Pegasus cloud environment, please
click the What's installed on this environment? link right below the drop-down menu:

Installed packages < >

Pegasus (Pegasuspy 1.4.3, Python 3.7.10, harmony-pytorch 0.1.6, nmf-torch 0.1.1) v

Updated: Jul 24, 2021

Version: 1.4.3
Package AT Version
adjustText Tools 0.7.3
anndata 0.7.6
annoy 1.17.0
cirrocumulus 1.1.17.postl
conda 492

crcmod 1.7

After that set other fields in the pop-out dialog:
* In Cloud compute profile field, you can set the computing resources (CPUs and Memory size) you want to use.
* In Compute type input, choose Standard VI, as this is the cheapest type and is enough for using Pegasus.

* (NEW) In case you need GPUs, select Enable GPUs, then choose GPU type and type in number of GPUs to
use. Notice that only version 1.4.3 or later supports this GPU mode.

* In Persistent disk size (GB) field, choose the size of the persistent disk for your cloud environment. This disk
space by default remains after you delete your cloud environment (unless you choose to delete the persistent disk
as well), but it costs even if you stop your cloud environment.

Now click the CREATE button to start the creation. After waiting for 1-2 minutes, your cloud environment will be ready
to use, and it’s started automatically.
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1.2. Create from custom environment

Alternatively, you can create from a custom environment if you want to use an older version of Pegasus.

Application configuration @

| Custom Environment v ‘

Container image

| cumulusprod/pegasus-terra:1.0 ‘

Custom environments must be based off one of the Terra Jupyter Notebook base
images

Cloud compute profile

CPUs ‘ 4 v ‘ Memory (GB) ‘ 15 v ‘

Startup script

| URI

Compute type

| Standard VM v

Persistent disk size (GB)

Persistent disks store analysis data. Learn more about persistent disks and where
your disk is mounted.

|sot

In the cloud environment setting page:

* In Application configuration field, choose Custom Environment (see the first red rectangle above).

In Container image input, type cumulusprod/pegasus-terra:<version> (see the second red rectangle
above), where <version> should be chosen from this list. All the tags are for different versions of Pegasus.

In Cloud compute profile field, set the computing resources (CPUs and Memory size) you want to use.
In Compute type field, choose Standard VI, as this is the cheapest type and is enough for using Pegasus.

In Persistent disk size (GB) field, choose the size of the persistent disk for your cloud environment.

When finishing the configuration, click NEXT button. You’ll see a warning page, then click CREATE button to start the
creation. After waiting for 1-2 minutes, your cloud environment will be ready to use, and it’s started automatically.

1.3. Start an environment already created

After creation, this cloud environment is associated with your Terra workspace. You can start the same environment
anytime in your workspace by clicking the following button within red circle on the top-right panel:

Cloud Environment
= 'Stopped (< $0.01/ hr)
T AN T S N S |
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1. Create Your Terra Notebook
In the NOTEBOOKS tab of your workspace, you can either create a blank notebook, or upload your local notebook.
After creation, click EDIT button to enter the edit mode, and Terra will automatically start your cloud environment.

When the start-up is done, you can type the following code in your notebook to check if Pegasus can be loaded and if
it’s the correct version you want to use:

import pegasus as pg
pg.__version__

3. Load Data into Cloud Environment

To use your data on Cloud (i.e. from the Google Bucket of your workspace), you should first copy it into your notebook’s
cloud environment by Google Cloud SDK:

lgsutil -m cp gs://link-to-count-matrix .

where gs://link-to-count-matrix is the Google Bucket URL to your count matrix data file, and ! is the indicator
of running terminal commands within Jupyter notebook.

After that, you can use Pegasus function to load it into memory.

Please refer to tutorials for how to use Pegasus on Terra notebook.
4. Stop Notebook Runtime
When you are done with the interactive analysis, to avoid being charged by Google Cloud while not using it, don’t

forget to stop your cloud environment by clicking the following button of the top-right panel of your workspace within
red circle:

=
ui loud Environment

. unning ($0.20 / hr)
i

If you forget to stop manually, as far as you’ve closed all the webpages related to your cloud environment (e.g. Terra
notebooks, Terra terminals, etc.), you’ll still be safe. In this case, Terra will automatically stop the cloud environment
for you after waiting for a few minutes.

1.1.4 Tutorials

» Analysis Tutorial: A case study on single-cell RNA sequencing data analysis using Pegasus.

¢ Plotting Tutorial: Show how to use Pegasus to generate different kinds of plots for analysis.

 Batch Correction Tutorial: Introduction on batch correction / data integration methods available in Pegasus.
 Spatial Analysis Tutorial: Introduction on spatial analysis using Pegasus.

* Doublet Detection Tutorial: Introduction on doublet detection method in Pegasus.

* Regress Out Tutorial: Introduction on regressing out via a case study on cell-cycle gene effects.

e Pseudobulk Analysis Tutorial: Introduction on pseudobulk analysis using Pegasus.
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1.1.5 API

Pegasus can also be used as a python package. Import pegasus by:

import pegasus as pg

Read and Write

read_input(input_file[, file_type, mode, ...]) Load data into memory.
write_output(data, output_file[, file_type, ...]) Write data back to disk.
aggregate_matrices(csv_file[, restrictions, ...]) Aggregate channel-specific count matrices into one big

count matrix.

pegasus.read_input

pegasus.read_input (input_file, file_type=None, mode="r', genome=None, modality=None, black_list=None,

select_data=None, select_genome=None, select_modality=None)

Load data into memory. This function is used to load input data into memory. Inputs can be in ‘zarr’, ‘hSad’,
‘loom’, ‘10x’, ‘mtx’, ‘csv’, ‘tsv’, ‘fcs’ (for flow/mass cytometry data) or ‘nanostring’ (Nanostring GeoMx spatial

data) formats.

Parameters

e input_file (str) — Input file name.

» file_type (str, optional (default: None)) — File type, choosing from ‘zarr’, ‘h5ad’, ‘loom’,

¢

‘10x’, ‘mtx’, ‘csv’, ‘tsv’, ‘fcs’ (for flow/mass cytometry data), ‘nanostring’ or ‘visium’. If
None, inferred from input_file.

* mode (str, optional (default: ‘r’)) — File open mode, options are ‘r’ or ‘a’. If mode == ‘a’,
file_type must be zarr and ngene/select_singlets cannot be set.

* genome (str, optional (default: None)) — For formats like loom, mtx, dge, csv and tsv, genome
is used to provide genome name. In this case if genome is None, except mtx format, “un-
known” is used as the genome name instead.

* modality (str, optional (default: None)) — Default modality, choosing from ‘rna’, ‘atac’,

3

ter

>, ‘ber’, ‘crispr’, ‘hashing’, ‘citeseq’, ‘cyto’ (flow cytometry / mass cytometry) or ‘nanos-

tring’. If None, use ‘rna’ as default.

* black_list (Set/str], optional (default: None)) — Attributes in black list will be poped out.

* select_data (Set/str], optional (default: None)) — Only select data with keys in select_data.
Select_data, select_genome and select_modality are mutually exclusive.

* select_genome (Set/str], optional (default: None)) — Only select data with genomes in
select_genome. Select_data, select_genome and select_modality are mutually exclusive.

* select_modality (Set/str], optional (default: None)) — Only select data with modalities
in select_modality. Select_data, select_genome and select_modality are mutually exclusive.

Return type A MultimodalData object.
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Examples

>>> data = io.read_input('example_10x.h5")

>>> data = io.read_input('example.h5ad")

>>> data = io.read_input('example_ADT.csv', genome = 'hashing_HTO', modality =
< 'hashing")

pegasus.write_output

pegasus.write_output (data, output_file, file_type=None, is_sparse=True, precision=2)
Write data back to disk. This function is used to write data back to disk.

Parameters
e data (MutimodalData) — data to write back.

» output_file (str) — output file name. Note that for mtx files, output_file specifies a direc-
tory. For scp format, file_type must be specified.

o file_type (str, optional (default: None)) — File type can be ‘zarr’ (as folder), ‘zarr.zip’ (as
a ZIP file), ‘h5ad’, ‘loom’, ‘mtx’ or ‘scp’. If file_type is None, it will be inferred based on
output_file.

» is_sparse (bool, optional (default: True)) — Only used for writing out SCP-compatible
files, if write expression as a sparse matrix.

* precision (int, optional (default: 2)) — Precision after decimal point for values in mtx and
scp expression matrix.

Return type None

Examples

>>> jo.write_output(data, 'test.zarr')

pegasus.aggregate_matrices

pegasus.aggregate_matrices(csv_file, restrictions=[], attributes=[], default_ref=None,
append_sample_name=True, select_singlets=False, remap_string=None,
subset_string=None, min_genes=None, max_genes=None, min_umis=None,
max_umis=None, mito_prefix=None, percent_mito=None)

Aggregate channel-specific count matrices into one big count matrix.

This function takes as input a csv_file, which contains at least 2 columns — Sample, sample name; Location,
file that contains the count matrices (e.g. filtered_gene_bc_matrices_h5.hS), and merges matrices from the same
genome together. If multi-modality exists, a third Modality column might be required. An aggregated Multi-
modal Data will be returned.

If csv_file is a dictionary, it should contain 2 keys: Sample for sample names, and Object for Multimodal data
objects. Besides, all the keys in the dictionary must keep values as lists of the same length. In this case, the
objects will be merged into one data object. In addition, aggregate_matrices will make copies instead of editing
the objects.
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The csv_file can optionally contain two columns - nUMI and nGene. These two columns define minimum number
of UMIs and genes for cell selection for each sample. The values in these two columns overwrite the min_genes
and min_umis arguments.

Parameters

» csv_file (str) — The CSV file containing information about each channel. Alternatively, a
dictionary or pd.Dataframe can be passed.

restrictions (list/str] or str, optional (default: [])) — A list of restrictions used to select
channels, each restriction takes the format of name:value,...,value or name:~value,..,value,
where ~ refers to not. If only one restriction is provided, it can be provided as a string instead
of a list.

attributes (list/str] or str, optional (default: [])) — A list of attributes need to be incor-
porated into the output count matrix. If only one attribute is provided, this attribute can be
provided as a string instead of a list.

default_ref (str, optional (default: None)) — Default reference name to use. If there is
no Reference column in the csv_file, a Reference column will be added with default_ref as
its value. This argument can also be used for replacing genome names. For example, if
default_ref is ‘hg19:GRCh38,GRCh38’, we will change any genome with name ‘hgl9’ to
‘GRCh38’ and if no genome is provided, ‘GRCh38’ is the default.

» append_sample_name (bool, optional (default: True)) — By default, append sample_name
to each channel. Turn this option off if each channel has distinct barcodes.

* select_singlets (bool, optional (default: False)) — If we have demultiplexed data, turning
on this option will make pegasus only include barcodes that are predicted as singlets.

e remap_string (str, optional, default None) - Remap singlet
names using <remap_string>, ~ where <remap_string> takes the format
“new_name_i:old_name_1,0ld_name_2;new_name_ii:old_name_3;...". For example,

if we hashed 5 libraries from 3 samples samplel_libl, samplel_lib2, sample2_libl,
sample2_lib2 and sample3, we can remap them to 3 samples using this string: “sam-
plel:samplel_libl,samplel_lib2;sample2:sample2_lib1,sample2_lib2”. In this way, the
new singlet names will be in metadata field with key ‘assignment’, while the old names will
be kept in metadata field with key ‘assignment.orig’.

subset_string (str, optional, default None) — If select singlets, only select singlets in the
<subset_string>, which takes the format “namel,name2,...”. Note that if —remap-singlets
is specified, subsetting happens after remapping. For example, we can only select singlets
from sampe 1 and 3 using “samplel,sample3”.

min_genes (int, optional, default: None) — Only keep cells with at least min_genes genes.

* max_genes (int, optional, default: None) — Only keep cells with less than max_genes
genes.

» min_umis (int, optional, default: None) — Only keep cells with at least min_umis UMIs.

e max_umis (int, optional, default: None) — Only keep cells with less than max_umis UMIs.

mito_prefix (str, optional, default: None) — Prefix for mitochondrial genes.

percent_mito (float, optional, default: None) — Only keep cells with percent mitochon-
drial genes less than percent_mito % of total counts. Only when both mito_prefix and
percent_mito set, the mitochondrial filter will be triggered.

Returns The aggregated count matrix as an MultimodalData object.

Return type MultimodalData object.
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Examples

'Platform',

'], attributes=['Source',

—data2]})

>>> data = aggregate_matrices('example.csv', restrictions=['Source:pbmc',
'Donor'])
>>> data = aggregate_matrices({'Sample’:

'Donor:1

['samplel', 'sample2'], 'Object': [datal,.

Analysis Tools

Preprocess

gc_metrics(data[, select_singlets, ...])

Generate Quality Control (QC) metrics regarding cell
barcodes on the dataset.

get_filter_ stats(data[, min_genes_before_filt])

Calculate filtration stats on cell barcodes.

filter_data(data[, focus_list])

Filter data based on qc_metrics calculated in pg.
gc_metrics.

identify_robust_genes(data[, percent_cells])

Identify robust genes as candidates for HVG selection
and remove genes that are not expressed in any cells.

log_norm(data[, norm_count, backup_matrix])

Normalization, and then apply natural logarithm to the
data.

highly_variable_features(data[, batch, ...])

Highly variable features (HVF) selection.

select_features(datal, features, ...])

Subset the features and store the resulting matrix in
dense format in data.uns with '_tmp_fmat_' prefix, with
the option of standardization and truncating based on
max_value.

pca(data[, n_components, features, ...])

Perform Principle Component Analysis (PCA) to the
data.

nmf (data[, n_components, features, space, ...])

Perform Nonnegative Matrix Factorization (NMF) to the
data using Frobenius norm.

regress_out(data, attrs[, rep])

Regress out effects due to specific observational at-
tributes.

calculate_z_score(data[, n_bins])

Calculate the standardized z scores of the count matrix.

pegasus.qc_metrics

pegasus.qc_metrics(data, select_singlets=False, remap_string=None, subset_string=None, min_genes=None,
max_genes=None, min_umis=None, max_umis=None, mito_prefix=None,

percent_mito=None)

Generate Quality Control (QC) metrics regarding cell barcodes on the dataset.

Parameters

» data (pegasusio.MultimodalData) — Use current selected modality in data, which
should contain one RNA expression matrix.

* select_singlets (bool, optional, default False) — If select only singlets.

e remap_string
names  using

(str,
<remap_string>,

“new_name_i:old_name_1,0ld_name_2;new_name_ii:old_name_3;...”.

optional,

default None) -
where  <remap_string>

Remap singlet
takes the format
For example,

if we hashed 5 libraries from 3 samples samplel_libl, samplel_lib2, sample2_libl,
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sample2_lib2 and sample3, we can remap them to 3 samples using this string: “sam-
plel:samplel_libl,samplel_lib2;sample2:sample2_lib1,sample2_lib2”. In this way, the
new singlet names will be in metadata field with key ‘assignment’, while the old names will
be kept in metadata field with key ‘assignment.orig’.

subset_string (str, optional, default None) — If select singlets, only select singlets in the
<subset_string>, which takes the format “namel,name2,...”. Note that if —remap-singlets
is specified, subsetting happens after remapping. For example, we can only select singlets
from sampe 1 and 3 using “samplel,sample3”.

min_genes (int, optional, default: None) — Only keep cells with at least min_genes genes.

max_genes (int, optional, default: None) — Only keep cells with less than max_genes
genes.

min_umis (int, optional, default: None) — Only keep cells with at least min_umis UMIs.
max_umis (int, optional, default: None) — Only keep cells with less than max_umis UMIs.
mito_prefix (str, optional, default: None) — Prefix for mitochondrial genes.

percent_mito (float, optional, default: None) — Only keep cells with percent mitochon-
drial genes less than percent_mito % of total counts.

Return type None

Returns

Examples

None
Update data.obs —
— n_genes: Total number of genes for each cell.

n_counts: Total number of counts for each cell.

percent_mito: Percent of mitochondrial genes for each cell.

passed_qgc: Boolean type indicating if a cell passes the QC process based on the QC
metrics.

demux_type: this column might be deleted if select_singlets is on.

>>> pg.qc_metrics(data, min_genes=500, max_genes=6000, mito_prefix="NT-", percent_
—mito=10)

pegasus.get_filter_stats

pegasus.get_filter_stats(data, min_genes_before_filt=100)

Calculate filtration stats on cell barcodes.

Parameters

* data (pegasusio.MultimodalData) — Use current selected modality in data, which

should contain one RNA expression matrix.

* min_genes_before_filt (int, optional, default 180) — If raw data matrix is input, empty

barcodes will dominate pre-filtration statistics. To avoid this, for raw matrix, only consider
barcodes with at least <number> genes for pre-filtration condition.
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Returns df_cells — Data frame of stats on cell filtration.

Return type pandas.DataFrame

Examples

>>> df = pg.get_filter_stats(data)

pegasus.filter_data

pegasus. filter_data(data, focus_list=None)
Filter data based on qc_metrics calculated in pg.qc_metrics.

Parameters

* data (pegasusio.MultimodalData) — Use current selected modality in data, which
should contain one RNA expression matrix.

» focus_list (List[str], optional, default None) — UnimodalData objects with keys in
focus_list were qc_metrics marked. Filter them and make sure other modalities’ barcodes
are consistent with filtered barcodes. If focus_list is None and self._selected’s modality is
“rna”, focus_list = [self._selected]

Return type None
Returns
* None

» Update data with cells after filtration.

Examples

>>> pg.filter_data(data)

pegasus.identify_robust_genes

pegasus.identify_robust_genes (data, percent_cells=0.05)

Identify robust genes as candidates for HVG selection and remove genes that are not expressed in any cells.
Parameters

» data (pegasusio.MultimodalData) — Use current selected modality in data, which
should contain one RNA expression matrix.

» percent_cells (float, optional, default: 8.05) — Only assign genes to be robust that
are expressed in at least percent_cells % of cells.

Return type None
Returns
* None

* Update data.var —
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n_cells: Total number of cells in which each gene is measured.

percent_cells: Percent of cells in which each gene is measured.

robust: Boolean type indicating if a gene is robust based on the QC metrics.

highly_variable_features: Boolean type indicating if a gene is a highly variable
feature. By default, set all robust genes as highly variable features.

Examples

>>> pg.identify_robust_genes(data, percent_cells = 0.05)

pegasus.log_norm

pegasus. log_norm(data, norm_count=100000.0, backup_matrix="raw.X")

Normalization, and then apply natural logarithm to the data.
Parameters

* data (pegasusio.MultimodalData) — Use current selected modality in data, which
should contain one RNA expression matrix.

* norm_count (int, optional, default: 1e5.) — Total counts of one cell after normalization.

* backup_matrix (str, optional, default: raw.X.) — The key name of the backup count ma-
trix, usually the raw counts.

Return type None
Returns
* None

* Update data.X with count matrix after log-normalization. In addition, back up the original
count matrix as backup_matrix.

* In case of rerunning normalization while backup_matrix already exists, use
backup_matrix instead of data.X for normalization.

Examples

>>> pg.log_norm(data)

pegasus.highly_variable_features

pegasus.highly_variable_features (data, batch=None, flavor="pegasus’, n_top=2000, span=0.02,
min_disp=0.5, max_disp=inf, min_mean=0.0125, max_mean=7,
n_jobs=- 1)

Highly variable features (HVF) selection. The input data should be logarithmized.
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.
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* batch (str, optional, default: None) — A key in data.obs specifying batch information. If
batch is not set, do not consider batch effects in selecting highly variable features. Otherwise,
if data.obs[batch] is not categorical, data.obs[batch] will be automatically converted into
categorical before highly variable feature selection.

» flavor (str, optional, default: "pegasus")— The HVF selection method to use. Available
choices are "pegasus" or "Seurat".

* n_top (int, optional, default: 2000) — Number of genes to be selected as HVF. if None, no
gene will be selected.

* span (float, optional, default: 8.02) — Only applicable when flavor is "pegasus". The
smoothing factor used by scikit-learn loess model in pegasus HVF selection method.

min_disp (float, optional, default: ®.5) — Minimum normalized dispersion.

max_disp (float, optional, default: np.inf) — Maximum normalized dispersion. Set it to
np.inf for infinity bound.

min_mean (float, optional, default: 8.0125) — Minimum mean.

max_mean (float, optional, default: 7) — Maximum mean.

* n_jobs (int, optional, default: -1) — Number of threads to be used during calculation. If
-1, all physical CPU cores will be used.

Return type None
Returns
* None
» Update data.var —

— highly_variable_features: replace with Boolean type array indicating the selected
highly variable features.

Examples

>>> pg.highly_variable_features(data)
>>> pg.highly_variable_features(data, batch="Channel™)

pegasus.select_features

pegasus.select_features (data, features='highly_variable_features', standardize=True, max_value=10.0)

Subset the features and store the resulting matrix in dense format in data.uns with ‘_tmp_fimat_’ prefix, with the
option of standardization and truncating based on max_value. ‘_tmp_finat_*" will be removed before writing
out the disk. :type data: Union[MultimodalData, UnimodalData] :param data: Annotated data matrix with
rows for cells and columns for genes. :type data: pegasusio.MultimodalData :type features: str :param
features: a keyword in data.var, which refers to a boolean array. If None, all features will be selected. :type
features: str, optional, default: highly_variable_features. :type standardize: bool :param standardize:
Whether to scale the data to unit variance and zero mean. :type standardize: bool, optional, default: True. :type
max_value: float :param max_value: The threshold to truncate data after scaling. If None, do not truncate.
‘type max_value: float, optional, default: 10.

Return type str

Returns
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» keyword (str) — The keyword in data.uns referring to the features selected.
* Update data.uns if needed —

— data.uns[keyword]: A submatrix of the data containing features selected.

Examples

>>> pg.select_features(data)

pegasus.pca

pegasus.pca(data, n_components=>50, features="highly_variable_features', standardize=True, max_value=10.0,
n_jobs=- 1, random_state=0)

Perform Principle Component Analysis (PCA) to the data.
The calculation uses scikit-learn implementation.
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* n_components (int, optional, default: 50.) — Number of Principal Components to get.

features (str, optional, default: "highly_variable_features".) — Keyword in data.
var to specify features used for PCA.

standardize (bool, optional, default: True.) — Whether to scale the data to unit variance
and zero mean.

* max_value (float, optional, default: 18.) — The threshold to truncate data after scaling. If
None, do not truncate.

* n_jobs (int, optional (default: -1)) — Number of threads to use. -1 refers to using all physical
CPU cores.

» random_state (int, optional, default: 0.) — Random seed to be set for reproducing result.
Return type None
Returns
* None.
» Update data.obsm—
— data.obsm["X_pca"]: PCA matrix of the data.

* Update data.uns —

data.uns["PCs"]: The principal components containing the loadings.

data.uns["pca_variance"]: Explained variance, i.e. the eigenvalues of the covari-
ance matrix.

data.uns["pca_variance_ratio"]: Ratio of explained variance.

data.uns["pca_features"]: Record the features used to generate PCA components.
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Examples

>>> pg.pca(data)

pegasus.nmf

pegasus.mmf (data, n_components=20, features='highly_variable_features', space='log', init="nndsvdar’,
algo="halsvar', mode='batch’, tol=0.0001, use_gpu=False, alpha_W=0.0, l1_ratio_W=0.0,
alpha_H=0.0, l1_ratio_H=0.0, fp_precision=float', n_jobs=- 1, random_state=0)

Perform Nonnegative Matrix Factorization (NMF) to the data using Frobenius norm. Steps include select features
and L2 normalization and NMF and L2 normalization of resulting coordinates.

The calculation uses nmf-torch package.

Parameters

data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

n_components (int, optional, default: 50.) — Number of Principal Components to get.

features (str, optional, default: "highly_variable_features".) —Keyword in data.
var to specify features used for nmf.

max_value (float, optional, default: None.) —The threshold to truncate data symmetrically
after scaling. If None, do not truncate.

space (str, optional, default: log.) — Choose from log and expression. log works
on log-transformed expression space; expression works on the original expression space
(normalized by total UMIs).

init (str, optional, default: nndsvdar.) — Method to initialize NMF. Options are ‘random’,
‘nndsvd’, ‘nndsvda’ and ‘nndsvdar’.

algo (str, optional, default: halsvar) — Choose from mu (Multiplicative Update), hals
(Hierarchical Alternative Least Square), halsvar (HALS variant, use HALS to mimic
bpp and can get better convergence for sometimes) and bpp (alternative non-negative least
squares with Block Principal Pivoting method).

mode (str, optional, default: batch) — Learning mode. Choose from batch and online.
Notice that online only works when beta=2.0. For other beta loss, it switches back to
batch method.

tol (float, optional, default: 1e-4) — The toleration used for convergence check.

use_gpu (bool, optional, default: False) — If True, use GPU if available. Otherwise, use
CPU only.

alpha W (float, optional, default: 0.08) — A numeric scale factor which multiplies the
regularization terms related to W. If zero or negative, no regularization regarding W is con-
sidered.

11_ratio_W (float, optional, default: ®.8) — The ratio of L1 penalty on W, must be be-
tween 0 and 1. And thus the ratio of L2 penalty on W is (1 - 11_ratio_W).

alpha_H (float, optional, default: ®.0)— A numeric scale factor which multiplies the regu-
larization terms related to H. If zero or negative, no regularization regarding H is considered.

11_ratio_H (float, optional, default: 8.0) — The ratio of L1 penalty on W, must be be-
tween 0 and 1. And thus the ratio of L2 penalty on H is (1 - 11_ratio_H).
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» fp_precision (str, optional, default: float) — The numeric precision on the results.
Choose from float and double.

* n_jobs (int, optional (default: -1)) — Number of threads to use. -1 refers to using all physical
CPU cores.

» random_state (int, optional, default: 8.) — Random seed to be set for reproducing result.
Return type None
Returns

* None.

» Update data.obsm—

— data.obsm["X_nmf"]: Scaled NMF coordinates of shape (n_cells,
n_components). Each column has a unit variance.

— data.obsm["H"]: The coordinate factor matrix of shape (n_cells, n_components).
e Update data.uns —

— data.uns["W"]: The feature factor matrix of shape (n_HVFs, n_components).

— data.uns["nmf_err"]: The NMF loss.

— data.uns["nmf_features"]: Record the features used to perform NMF analysis.

Examples

>>> pg.nmf(data)

pegasus.regress_out

pegasus.regress_out (data, attrs, rep="pca’)
Regress out effects due to specific observational attributes.
Parameters

e data (MultimodalData or UnimodalData object) — Annotated data matrix with rows for
cells and columns for genes.

e attrs (List[str]) — List of numeric cell attributes to be regressed out. They must exist in
data.obs field.

» rep (str, optional, default: pca) — This is to specify which embedding to be used for regress-
ing out. The key 'X_'+rep must exist in data.obsm field. By default, use PCA embedding.

Return type str
Returns

* res_key (str) — The key to the resulting new embedding matrix in data.obsm. It’s
'X_'+rep+'_regressed'.

* Update data.obsm—

— data.obsm[pca_key]: The PCA matrix with effects of attributes specified regressed
out.
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Examples

>>> pg.regress_out(data, attrs=['Gl/S', 'G2/M'])

pegasus.calculate_z_score

pegasus.calculate_z_score(data, n_bins=50)

Calculate the standardized z scores of the count matrix.
Parameters

» data (MultimodalData, UnimodalData, or anndata.AnnData object.) — Single cell ex-
pression data.

* n_bins (int, optional, default: 50) — Number of bins on expression levels for grouping
genes.

Returns A 2D numpy array of shape (n_cells, n_features), which represents the standardized
Z-score expression matrix.

Return type numpy.array

Examples

>>> pg.calculate_z_score(data)
>>> pg.calculate_z_score(data, n_bins=100)

Batch Correction

run_harmony(data[, batch, rep, n_jobs, ...]) Batch correction on PCs using Harmony.
run_scanorama(data[, batch, n_components, ...]) Batch correction using Scanorama.
integrative_nmf(data[, batch, n_components, ...]) Perform Integrative Nonnegative Matrix Factorization

(iINMF) [Yang16] for data integration.
run_scvi(data[, features, matkey, n_jobs, ...]) Run scVI embedding.

pegasus.run_harmony

pegasus.run_harmony (data, batch='Channel’, rep="pca’, n_jobs=- 1, n_clusters=None, random_state=0,
use_gpu=False, max_iter_harmony=10)

Batch correction on PCs using Harmony.

This is a wrapper of harmony-pytorch package, which is a Pytorch implementation of Harmony algorithm
[Korsunsky19].

Parameters

e data (MultimodalData.) — Annotated data matrix with rows for cells and columns for
genes.

* batch (str, optional, default: "Channel".) — Which attribute in data.obs field represents
batches, default is “Channel”.
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* rep (str, optional, default: "pca".) — Which representation to use as input of Harmony,
default is PCA.

* n_jobs (int, optional, default: -1.) — Number of threads to use in Harmony. -1 refers to
using all physical CPU cores.

* n_clusters (int, optional, default: None.) — Number of Harmony clusters. Default is
None, which asks Harmony to estimate this number from the data.

» random_state (int, optional, default: 0.) — Seed for random number generator

* use_gpu (bool, optional, default: False.) — If True, use GPU if available. Otherwise, use
CPU only.

e max_iter_harmony (int, optional, default: 10.) — Maximum iterations on running Har-
mony if not converged.

Return type str
Returns

* out_rep (str) — The keyword in data.obsm referring to the embedding calculated by Har-
mony algorithm.

This keyword is rep + '_harmony', where rep is the input parameter above.
» Update data.obsm—

— data.obsm['X_"' + out_rep]: The embedding calculated by Harmony algorithm.

Examples

>>> pg.run_harmony(data, rep = "pca", n_jobs = 10, random_state = 25)

pegasus.run_scanorama

pegasus.run_scanorama (data, batch='Channel', n_components=>50, features='highly_variable_features',
standardize=True, max_value=10.0, random_state=0)

Batch correction using Scanorama.
This is a wrapper of Scanorama package. See [Hie19] for details on the algorithm.
Parameters

e data (MultimodalData.) — Annotated data matrix with rows for cells and columns for
genes.

* batch (str, optional, default: "Channel".) — Which attribute in data.obs field represents
batches, default is “Channel”.

* n_components (int, optional default: 50.) — Number of integrated embedding components
to keep. This sets Scanorama’s dimred parameter.

o features (str, optional, default: "highly_variable_features".) —Keyword in data.
var to specify features used for Scanorama.

» standardize (bool, optional, default: True.) — Whether to scale the data to unit variance
and zero mean.

* max_value (float, optional, default: 18.) — The threshold to truncate data after scaling. If
None, do not truncate.
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» random_state (int, optional, default: 0.) — Seed for random number generator.
Return type str
Returns

* out_rep (str) — The keyword in data.obsm referring to the embedding calculated by
Scanorama algorithm. out_rep is always equal to “scanorama”

* Update data.obsm—

— data.obsm['X_scanorama']: The embedding calculated by Scanorama algorithm.

Examples

>>> pg.run_scanorama(data, random_state = 25)

pegasus.integrative_nmf

pegasus.integrative_nmf (data, batch="'"Channel’, n_components=20, features="highly_variable_features',
space='"log’, algo="halsvar', mode='online’, tol=0.0001, use_gpu=False, lam=>5.0,
fp_precision="float', n_jobs=- 1, random_state=0, quantile_norm=True)

Perform Integrative Nonnegative Matrix Factorization (iNMF) [Yang16] for data integration.
The calculation uses nmf-torch .

This function assumes that cells in each batch are adjacent to each other. In addition, it will scale each batch
with L2 norm separately. The resulting Hs will also be scaled with L2 norm. If quantile_norm=True, quantile
normalization will be additionally performed.

See [Welch19] and [Gao21] for preprocessing and normalization details.
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* batch (str, optional, default: "Channel".) — Which attribute in data.obs field represents
batches, default is “Channel”.

* n_components (int, optional, default: 50.) — Number of Principal Components to get.

» features (str, optional, default: "highly_variable_features".) — Keyword in data.
var to specify features used for integrative_nmf.

* space (str, optional, default: 1log.) — Choose from log and expression. log works
on log-transformed expression space; expression works on the original expression space
(normalized by total UMIs).

* algo (str, optional, default: halsvar)— Choose from mu (Multiplicative Update), halsvar
(HALS variant that mimic bpp but faster) and bpp (alternative non-negative least squares
with Block Principal Pivoting method).

* mode (str, optional, default: online) — Learning mode. Choose from batch and online.
Notice that online only works when beta=2.0. For other beta loss, it switches back to
batch method.

* tol (float, optional, default: 1e-4) — The toleration used for convergence check.

1.1. 1.6.0 April 16, 2022 45


https://github.com/lilab-bcb/nmf-torch

Pegasus Documentation, Release 1.6.0

* use_gpu (bool, optional, default: False) — If True, use GPU if available. Otherwise, use
CPU only.

e lam (float, optional, default: 5.0) — The coeflicient for regularization terms. If 0, then no
regularization will be performed.

» fp_precision (str, optional, default: float) — The numeric precision on the results.
Choose from float and double.

* n_jobs (int, optional (default: -1)) — Number of threads to use. -1 refers to using all physical
CPU cores.

» random_state (int, optional, default: 8.) — Random seed to be set for reproducing result.

e quantile_norm (bool, optioanl, default: True.) — Perform quantile normalization as de-
scribed in Gao et al. Nature Biotech 2021. Cluster refinement K=20; min_cells=20; quantiles
= 50.

Returns out_rep — The keyword in data. obsm referring to the embedding calculated by integrative
NMF algorithm. out_rep is always equal to “inmf”

Return type str
Update data.obsm:
e data.obsm["X_inmf"]: Scaled and possibly quantile normalized iNMF coordinates.

e data.obsm["H"]: The concatenation of coordinate factor matrices of shape (n_cells,
n_components).

Update data.uns:
e data.uns["W"]: The feature factor matrix of shape (n_HVFs, n_components).

e data.uns["V"]: The batch specific feature factor matrices as one tensor of shape (n_batches,
n_components, n_HVFs).

e data.uns["inmf_err"]: The iNMF loss.

e data.uns["inmf_features"]: Record the features used to perform iNMF analysis.

Examples

>>> pg.integrative_nmf(data)

pegasus.run_scvi

pegasus.run_scvi (data, features='highly_variable_features', matkey="raw.X', n_jobs=- 1, random_state=0,
max_epochs=None, batch=None, categorical_covariate_keys=None,
continuous_covariate_keys=None, use_gpu=None)

Run scVI embedding.
This is a wrapper of scvitools package.
Parameters

e data (MultimodalData.) — Annotated data matrix with rows for cells and columns for
genes.

o features (str, optional, default: "highly_variable_features") - Keyword in data.
var, which refers to a boolean array. If None, all features will be selected.
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» matkey (str, optional, default: "raw.X") — Matrix key for the raw count

* n_jobs (int, optional, default: -1.) — Number of threads to use. -1 refers to using all
physical CPU cores.

» random_state (int, optional, default: 0.) — Seed for random number generator

» max_epochs (int | None, optional, default: None.) — Maximum number of training
epochs. Defaults to np.min([round((20000 / n_cells) * 400), 400])

* batch (str, optional, default: None.) — If only one categorical covariate, the obs key repre-
senting batches that should be corrected for, default is None.

* categorical_covariate_keys (List[str]) - If multiple categorical covariates, a list of
obs keys listing categorical covariates that should be corrected for, default is None.

» continuous_covariate_keys (List[str])— A list of obs keys listing continuous covari-
ates that should be corrected for, default is None.

e use_gpu (str | int | bool | None) - Use default GPU if available (if None or True),
or index of GPU to use (if int), or name of GPU (if str, e.g., cuda:0), or use CPU (if False).

Return type str
Returns

* out_rep (str) — The keyword in data.obsm referring to the embedding calculated by inte-
grative NMF algorithm. out_rep is always equal to “scVI”

* Update data.obsm—
— data.obsm['X_scVI']: The embedding calculated by scVI.

Examples

>>> pg.run_scvi(data, batch="Channel")
>>> pg.run_scvi(data, categorical_covariate_keys=["cell_source", "donor"],.
—,continuous_covariate_keys=["percent_mito", "percent_ribo"])

Nearest Neighbors

neighbors(data[, K, rep, n_jobs, ...]) Compute k nearest neighbors and affinity matrix, which
will be used for diffmap and graph-based community de-
tection algorithms.

get_neighbors(data[, K, rep, n_jobs, ...]) Find K nearest neighbors for each data point and return
the indices and distances arrays.

calc_kBET(data, attr[, rep, K, alpha, ...]) Calculate the kBET metric of the data regarding a spe-
cific sample attribute and embedding.

calc_kSIM(data, attr[, rep, K, min_rate, ...]) Calculate the kSIM metric of the data regarding a spe-

cific sample attribute and embedding.
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pegasus.neighbors

pegasus.neighbors (data, K=100, rep='pca’, n_jobs=- 1, random_state=0, full_speed=False, use_cache=True,
dist="12")

Compute k nearest neighbors and affinity matrix, which will be used for diffmap and graph-based community
detection algorithms.

The kNN calculation uses hnswlib introduced by [Malkov16].
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* K (int, optional, default: 100) — Number of neighbors, including the data point itself.

* rep (str, optional, default: "pca") — Embedding representation used to calculate kKNN. If
None, use data.X; otherwise, keyword 'X_"' + rep must exist in data.obsm.

* n_jobs (int, optional, default: -1) — Number of threads to use. If -1, use all physical CPU
cores.

* random_state (int, optional, default: ®) — Random seed set for reproducing results.
» full_speed (bool, optional, default: False) —

— If True, use multiple threads in constructing hnsw index. However, the kNN results are
not reproducible.

— Otherwise, use only one thread to make sure results are reproducible.
» use_cache (bool, optional, default: True) —

— If True and found cached knn results, Pegasus will use cached results and do not recom-
pute.

— Otherwise, compute KNN irrespective of caching status.

» dist (str, optional (default: "12")) — Distance metric to use. By default, use squared L2
distance. Available options, inner product "ip" or cosine similarity "cosine".

Return type None
Returns
* None
» Update data.obsm—

— data.obsm[rep + "_knn_indices"]: kNN index matrix. Row i is the index list of
kNN of cell i (excluding itself), sorted from nearest to farthest.

— data.obsm[rep + "_knn_distances"]: kNN distance matrix. Row i is the distance
list of kNN of cell i (excluding itselt), sorted from smallest to largest.

* Update data.obsp —
— data.obsp["W_" + rep]: kNN graph of the data in terms of affinity matrix.
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Examples

>>> pg.neighbors(data)

pegasus.get_neighbors

pegasus.get_neighbors(data, K=100, rep="pca’, n_jobs=- 1, random_state=0, full_speed=False,
use_cache=True, dist="12")

Find K nearest neighbors for each data point and return the indices and distances arrays.
Parameters
 data (pegasusio.MultimodalData) — An AnnData object.
* K (int, optional (default: 100)) — Number of neighbors, including the data point itself.

» rep (str, optional (default: ‘pca’)) — Representation used to calculate kNN. If None use
data.X

* n_jobs (int, optional (default: -1)) — Number of threads to use. -1 refers to using all physical
CPU cores.

» random_state (int, optional (default: 0)) — Random seed for random number generator.

» full_speed (bool, optional (default: False)) — If full_speed, use multiple threads in con-
structing hnsw index. However, the kNN results are not reproducible. If not full_speed, use
only one thread to make sure results are reproducible.

» use_cache (bool, optional (default: True)) — If use_cache and found cached knn results,
will not recompute.

» dist (str, optional (default: ‘12’)) — Distance metric to use. By default, use squared L2
distance. Available options, inner product ‘ip’ or cosine similarity ‘cosine’.

Return type kNN indices and distances arrays.

Examples

>>> indices, distances = tools.get_neighbors(data)

pegasus.calc_kBET

pegasus.calc_kBET (data, attr, rep="pca’, K=25, alpha=0.05, n_jobs=- 1, random_state=0, temp_folder=None,
use_cache=True)

Calculate the KBET metric of the data regarding a specific sample attribute and embedding.

The kBET metric is defined in [Biittner 18], which measures if cells from different samples mix well in their local
neighborhood.

Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* attr (str)— The sample attribute to consider. Must exist in data.obs.
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* rep (str, optional, default: "pca") — The embedding representation to be used. The key
'X_' + rep must exist in data.obsm. By default, use PCA coordinates.

* K (int, optional, default: 25) — Number of nearest neighbors, using L2 metric.

* alpha (float, optional, default: ®.85) — Acceptance rate threshold. A cell is accepted if
its KBET p-value is greater than or equal to alpha.

* n_jobs (int, optional, default: -1) — Number of threads used. If -1, use all physical CPU
cores.

» random_state (int, optional, default: ) — Random seed set for reproducing results.
* temp_folder (str, optional, default: None) — Temporary folder for joblib execution.
» use_cache (bool, optional, default: True) — If use cache results for kKNN.

Return type Tuple[float, float, float]

Returns
» stat_mean (float) — Mean kBET chi-square statistic over all cells.
* pvalue_mean (float) — Mean kBET p-value over all cells.

» accept_rate (float) — kBET Acceptance rate of the sample.

Examples

>>> pg.calc_kBET(data, attr = 'Channel')

>>> pg.calc_kBET(data, attr

"Channel', rep = 'umap')

pegasus.calc_kSIM

pegasus.calc_kSIM(data, attr, rep="pca’, K=25, min_rate=0.9, n_jobs=- 1, random_state=0, use_cache=True)

Calculate the kSIM metric of the data regarding a specific sample attribute and embedding.

The kSIM metric is defined in [Li20], which measures if a sample attribute is not diffused too much in each cell’s
local neighborhood.

Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* attr (str)— The sample attribute to consider. Must exist in data.obs.

* rep (str, optional, default: "pca") — The embedding representation to consider. The key
'X_' + rep must exist in data.obsm.

* K (int, optional, default: 25) — The number of nearest neighbors to be considered.

* min_rate (float, optional, default: 0.9) — Acceptance rate threshold. A cell is accepted
if its kSIM rate is larger than or equal to min_rate.

* n_jobs (int, optional, default: -1) — Number of threads used. If -1, use all physical CPU
cores.

» random_state (int, optional, default: ) — Random seed set for reproducing results.
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use_cache (bool, optional, default: True) — If use cache results for kNN.

Return type Tuple[float, float]

Returns

Examples

kSIM_mean (float) — Mean kSIM rate over all the cells.
kSIM_accept_rate (float) — kSIM Acceptance rate of the sample.

>>> pg.calc_kSIM(data, attr = 'cell_type')

>>> pg.calc_kSIM(data, attr = 'cell_type', rep = 'umap')

Diffusion Map
diffmap(data[, n_components, rep, solver, ...]) Calculate Diffusion Map.
calc_pseudotime(data, roots) Calculate Pseudotime based on Diffusion Map.
infer_path(data, cluster, clust_id, path_name) Inference on path of a cluster.

pegasus.diffmap

pegasus.diffmap (data, n_components=100, rep="pca’, solver="eigsh', max_t=5000, n_jobs=- 1,

random_state=0)

Calculate Diffusion Map.

Parameters

data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

n_components (int, optional, default: 100) — Number of diffusion components to calculate.

rep (str, optional, default: "pca")—-Embedding Representation of data used for calculating
the Diffusion Map. By default, use PCA coordinates.

solver (str, optional, default: "eigsh") —
Solver for eigen decomposition:

— "eigsh": default setting. Use scipy eigsh as the solver to find eigenvalus and eigen-
vectors using the Implicitly Restarted Lanczos Method.

— "randomized": Use scikit-learn randomized_svd as the solver to calculate a truncated
randomized SVD.

max_t (float, optional, default: 5000) — pegasus tries to determine the best t to sum up to
between [1, max_t].

n_jobs (int, optional (default: -1)) — Number of threads to use. -1 refers to using all physical
CPU cores.

random_state (int, optional, default: ®) — Random seed set for reproducing results.

Return type None
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Returns
* None
» Update data.obsm—
— data.obsm["X_diffmap"]: Diffusion Map matrix of the data.
e Update data.uns —

— data.uns["diffmap_evals"]: Eigenvalues corresponding to Diffusion Map matrix.

Examples

>>> pg.diffmap(data)

pegasus.calc_pseudotime

pegasus.calc_pseudotime (data, roots)
Calculate Pseudotime based on Diffusion Map.

Parameters

e data (anndata.AnnData) — Annotated data matrix with rows for cells and columns for
genes.

e roots (List[str]) — List of cell barcodes in the data.
Return type None
Returns

* None

* Update data.obs —

— data.obs["pseudotime"]: Pseudotime result.

Examples

>>> pg.calc_pseudotime(adata, roots = list(adata.obs_names[0:100]))

pegasus.infer_path

pegasus.infer_path(data, cluster, clust_id, path_name, k=10)
Inference on path of a cluster.

Parameters

e data (anndata.AnnData) — Annotated data matrix with rows for cells and columns for
genes.

e cluster (str) — Cluster name. Must exist in data. obs.
e clust_id — Cluster label. Must be a value of data.obs[cluster].

» path_name (str) — Key name of the resulting path information.
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* k (int, optional, default: 10) — Number of nearest neighbors on Diffusion Map coordinates
used in path reference.

Returns
* None
» Update data.obs —

— data.obs[path_name]: The inferred path information on Diffusion Map about a specific
cluster.

Examples

>>> pg.infer_path(adata, cluster = 'leiden_labels', clust_id = '1l', path_name =
—"'"leiden_1_path')

Cluster Algorithms

cluster(data[, algo, rep, resolution, ...]) Cluster the data using the chosen algorithm.
louvain(data[, rep, resolution, n_clust, ...]) Cluster the cells using Louvain algorithm.
leiden(data[, rep, resolution, n_clust, ...]) Cluster the data using Leiden algorithm.
spectral_louvain(data[, rep, resolution, ...]) Cluster the data using Spectral Louvain algorithm.
spectral_leiden(datal, rep, resolution, ...]) Cluster the data using Spectral Leiden algorithm.

pegasus.cluster

pegasus.cluster (data, algo="louvain', rep='pca’, resolution=1.3, n_jobs=- 1, random_state=0,
class_label=None, n_iter=- 1, rep_kmeans='diffmap', n_clusters=30, n_clusters2=50,
n_init=10)

Cluster the data using the chosen algorithm.

Candidates are louvain, leiden, spectral_louvain and spectral_leiden. If data have < 1000 cells and there are
clusters with sizes of 1, resolution is automatically reduced until no cluster of size 1 appears.

Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* algo (str, optional, default: "louvain")— Which clustering algorithm to use. Choices are
louvain, leiden, spectral_louvain, spectral_leiden

* rep (str, optional, default: "pca") — The embedding representation used for clustering.
Keyword 'X_' + rep must exist in data.obsm. By default, use PCA coordinates.

» resolution (int, optional, default: 1.3) — Resolution factor. Higher resolution tends to
find more clusters.

* n_jobs (int, optional (default: -1)) — Number of threads to use for the KMeans step in ‘spec-
tral_louvain’ and ‘spectral_leiden’. -1 refers to using all physical CPU cores.

» random_state (int, optional, default: ®) — Random seed for reproducing results.

» class_label (str, optional, default: None) — Key name for storing cluster labels in data.
obs. If None, use ‘algo_labels’.
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* n_iter (int, optional, default: -1) — Number of iterations that Leiden algorithm runs. If
-1, run the algorithm until reaching its optimal clustering.

* rep_kmeans (str, optional, default: "diffmap")— The embedding representation on which
the KMeans runs. Keyword must exist in data.obsm. By default, use Diffusion Map coor-
dinates. If diffmap is not calculated, use PCA coordinates instead.

* n_clusters (int, optional, default: 30) — The number of first level clusters.
* n_clusters2 (int, optional, default: 50) — The number of second level clusters.

* n_init (int, optional, default: 10) — Number of kmeans tries for the first level clustering.
Default is set to be the same as scikit-learn Kmeans function.

Return type None
Returns
* None
» Update data.obs —

— data.obs[class_label]: Cluster labels of cells as categorical data.

Examples

>>> pg.cluster(data, algo = 'leiden')

pegasus.louvain

pegasus.louvain(data, rep='pca’, resolution=1.3, n_clust=None, random_state=0, class_label="louvain_labels")

Cluster the cells using Louvain algorithm. [Blondel08]
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* rep (str, optional, default: "pca") — The embedding representation used for clustering.
Keyword 'X_"' + rep must exist in data.obsm and nearest neighbors must be calculated
so that affinity matrix '"W_' + rep exists in data.uns. By default, use PCA coordinates.

» resolution (int, optional, default: 1.3) — Resolution factor. Higher resolution tends to
find more clusters with smaller sizes.

* n_clust (int, optional, default: None) — This option only takes effect if ‘resolution = None’.
Try to find an appropriate resolution by binary search such that the total number of clusters
matches ‘n_clust’. The range of resolution to search is (0.01, 2.0].

» random_state (int, optional, default: ) — Random seed for reproducing results.

* class_label (str, optional, default: "louvain_labels") — Key name for storing cluster
labels in data.obs.

Return type None
Returns
* None

* Update data.obs —
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— data.obs[class_label]: Cluster labels of cells as categorical data.

Examples

>>> pg.louvain(data)

pegasus.leiden

pegasus.leiden(data, rep="pca’, resolution=1.3, n_clust=None, n_iter=- 1, random_state=0,
class_label='"leiden_labels")

Cluster the data using Leiden algorithm. [Traag19]
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* rep (str, optional, default: "pca") — The embedding representation used for clustering.
Keyword 'X_"' + rep must exist in data.obsm and nearest neighbors must be calculated
so that affinity matrix '"W_' + rep exists in data.uns. By default, use PCA coordinates.

» resolution (int, optional, default: 1.3) — Resolution factor. Higher resolution tends to
find more clusters.

* n_clust (int, optional, default: None) — This option only takes effect if ‘resolution = None’.
Try to find an appropriate resolution by binary search such that the total number of clusters
matches ‘n_clust’. The range of resolution to search is (0.01, 2.0].

* n_iter (int, optional, default: -1) — Number of iterations that Leiden algorithm runs. If
-1, run the algorithm until reaching its optimal clustering.

» random_state (int, optional, default: ®) — Random seed for reproducing results.

e class_label (str, optional, default: "leiden_labels") — Key name for storing cluster
labels in data.obs.

Return type None
Returns
* None
* Update data.obs —

— data.obs[class_label]: Cluster labels of cells as categorical data.

Examples

>>> pg.leiden(data)

1.1. 1.6.0 April 16, 2022 55



Pegasus Documentation, Release 1.6.0

pegasus.spectral_louvain

pegasus.spectral_louvain(data, rep="pca’, resolution=1.3, rep_kmeans='diffmap’, n_clusters=30,

n_clusters2=>50, n_init=10, n_jobs=- 1, random_state=0,
class_label="spectral_louvain_labels")

Cluster the data using Spectral Louvain algorithm. [Li20]
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* rep (str, optional, default: "pca") — The embedding representation used for clustering.
Keyword 'X_' + rep must exist in data.obsm. By default, use PCA coordinates.

» resolution (int, optional, default: 1.3) — Resolution factor. Higher resolution tends to
find more clusters with smaller sizes.

* rep_kmeans (str, optional, default: "diffmap")— The embedding representation on which
the KMeans runs. Keyword must exist in data.obsm. By default, use Diffusion Map coor-
dinates. If diffmap is not calculated, use PCA coordinates instead.

* n_clusters (int, optional, default: 30) — The number of first level clusters.
* n_clusters2 (int, optional, default: 50) — The number of second level clusters.

* n_init (int, optional, default: 1) — Number of kmeans tries for the first level clustering.
Default is set to be the same as scikit-learn Kmeans function.

* n_jobs (int, optional (default: -1)) — Number of threads to use for the KMeans step. -1 refers
to using all physical CPU cores.

» random_state (int, optional, default: ) — Random seed for reproducing results.

e class_label (str, optional, default: "spectral_louvain_labels") — Key name for
storing cluster labels in data.obs.

Return type None
Returns
* None
* Update data.obs —

— data.obs[class_label]: Cluster labels for cells as categorical data.

Examples

>>> pg.spectral_louvain(data)
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pegasus.spectral_leiden

pegasus.spectral_leiden(dara, rep="'pca’, resolution=1.3, rep_kmeans='diffmap', n_clusters=30,
n_clusters2=>50, n_init=10, n_jobs=- 1, random_state=0,
class_label="spectral_leiden_labels")

Cluster the data using Spectral Leiden algorithm. [Li20]
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* rep (str, optional, default: "pca") — The embedding representation used for clustering.
Keyword 'X_' + rep must exist in data.obsm. By default, use PCA coordinates.

» resolution (int, optional, default: 1.3) — Resolution factor. Higher resolution tends to
find more clusters.

» rep_kmeans (str, optional, default: "diffmap")— The embedding representation on which
the KMeans runs. Keyword must exist in data.obsm. By default, use Diffusion Map coor-
dinates. If diffmap is not calculated, use PCA coordinates instead.

* n_clusters (int, optional, default: 30) — The number of first level clusters.
* n_clusters2 (int, optional, default: 50) — The number of second level clusters.

* n_init (int, optional, default: 1) — Number of kmeans tries for the first level clustering.
Default is set to be the same as scikit-learn Kmeans function.

* n_jobs (int, optional (default: -1)) — Number of threads to use for the KMeans step. -1 refers
to using all physical CPU cores.

» random_state (int, optional, default: ) — Random seed for reproducing results.

e class_label (str, optional, default: "spectral_leiden_labels")—Key name for stor-
ing cluster labels in data.obs.

Return type None
Returns
* None
* Update data.obs —

— data.obs[class_label]: Cluster labels for cells as categorical data.

Examples

>>> pg.spectral_leiden(data)
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Visualization Algorithms

tsne(datal, rep, n_jobs, n_components, ...]) Calculate t-SNE embedding of cells using the FIt-SNE
package.

umap(data[, rep, n_components, n_neighbors, ...]) Calculate UMAP embedding of cells.

fle(data[, file_name, n_jobs, rep, K, ...]) Construct the Force-directed (FLE) graph.

net_umap(data[, rep, n_jobs, n_components, ...]) Calculate Net-UMAP embedding of cells.

net_fle(data[, file_name, n_jobs, rep, K, ...]) Construct Net-Force-directed (FLE) graph.

pegasus.tsne

pegasus.tsne(data, rep='pca’, n_jobs=- 1, n_components=2, perplexity=30, early_exaggeration=12,
learning_rate='auto', initialization="'pca’, random_state=0, out_basis='"tsne")

Calculate t-SNE embedding of cells using the FIt-SNE package.
This function uses fitsne package. See [Linderman19] for details on FIt-SNE algorithm.
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* rep (str, optional, default: "pca") — Representation of data used for the calculation. By
default, use PCA coordinates. If None, use the count matrix data.X.

* n_jobs (int, optional, default: -1) — Number of threads to use. If -1, use all physical CPU
cores.

* n_components (int, optional, default: 2) — Dimension of calculated FI-tSNE coordinates.
By default, generate 2-dimensional data for 2D visualization.

» perplexity (float, optional, default: 30) — The perplexity is related to the number of
nearest neighbors used in other manifold learning algorithms. Larger datasets usually require
a larger perplexity.

* early_exaggeration (int, optional, default: 12) — Controls how tight natural clusters in
the original space are in the embedded space, and how much space will be between them.

e learning_rate (float, optional, default: auto) — By default, the learning rate is deter-
mined automatically as max(data.shape[0] / early_exaggeration, 200). See [Belkinal9] and
[Kobak19] for details.

e initialization (str, optional, default: pca) — Initialization can be either pca or random
or np.ndarray. By default, we use pca initialization according to [Kobak19].

» random_state (int, optional, default: ®) — Random seed set for reproducing results.

» out_basis (str, optional, default: "fitsne") — Key name for calculated FI-tSNE coordi-
nates to store.

Return type None
Returns
* None
» Update data.obsm—

— data.obsm['X_"' + out_basis]: FI-tSNE coordinates of the data.
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Examples

>>> pg.tsne(data)

pegasus.umap

pegasus.umap (data, rep="'pca’, n_components=2, n_neighbors=15, min_dist=0.5, spread=1.0, densmap=False,
dens_lambda=2.0, dens_frac=0.3, dens_var_shift=0.1, n_jobs=- 1, full_speed=False,
random_state=0, out_basis="umap")

Calculate UMAP embedding of cells.
This function uses umap-learn package. See [Mclnnes18] for details on UMAP.
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

rep (str, optional, default: "pca") — Representation of data used for the calculation. By
default, use PCA coordinates. If None, use the count matrix data.X.

* n_components (int, optional, default: 2) — Dimension of calculated UMAP coordinates.
By default, generate 2-dimensional data for 2D visualization.

n_neighbors (int, optional, default: 15) — Number of nearest neighbors considered during
the computation.

min_dist (float, optional, default: 0.5) — The effective minimum distance between em-
bedded data points.

spread (float, optional, default: 1.0) — The effective scale of embedded data points.

densmap (bool, optional, default: False) — Whether the density-augmented objective of
densMAP should be used for optimization, which will generate an embedding where local
densities are encouraged to be correlated with those in the original space.

dens_lambda (float, optional, default: 2.0) — Controls the regularization weight of the
density correlation term in densMAP. Only works when densmap is True. Larger values
prioritize density preservation over the UMAP objective, while values closer to O for the
opposite direction. Notice that setting this parameter to 0 is equivalent to running the original
UMAP algorithm.

* dens_frac (float, optional, default: 8. 3)— Controls the fraction of epochs (between 0 and
1) where the density-augmented objective is used in densMAP. Only works when densmap is
True. The first (1 - dens_frac) fraction of epochs optimize the original UMAP objective
before introducing the density correlation term.

» dens_var_shift (float, optional, default, ®.1) — A small constant added to the variance
of local radii in the embedding when calculating the density correlation objective to prevent
numerical instability from dividing by a small number. Only works when densmap is True.

* n_jobs (int, optional, default: -1) — Number of threads to use for computing kNN graphs.
If -1, use all physical CPU cores.

full_speed (bool, optional, default: False) —

— If True, use multiple threads in constructing hnsw index. However, the kNN results are
not reproducible.

— Otherwise, use only one thread to make sure results are reproducible.
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» random_state (int, optional, default: ®) — Random seed set for reproducing results.

* out_basis (str, optional, default: "umap") — Key name for calculated UMAP coordinates
to store.

Return type None
Returns
* None
» Update data.obsm—

— data.obsm['X_"' + out_basis]: UMAP coordinates of the data.

Examples

>>> pg.umap(data)

pegasus.fle

pegasus. fle(data, file_name=None, n_jobs=- 1, rep="diffmap’', K=50, full_speed=Fulse,
target_change_per_node=2.0, target_steps=5000, is3d=False, memory=38, random_state=0,
out_basis=fle")

Construct the Force-directed (FLE) graph.
This implementation uses forceatlas2-python package, which is a Python wrapper of ForceAtlas2.
See [Jacomy 14] for details on FLE.

Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

o file_name (str, optional, default: None) — Temporary file to store the coordinates as the
input to forceatlas2. If None, use tempfile.mkstemp to generate file name.

* n_jobs (int, optional, default: -1) — Number of threads to use. If -1, use all physical CPU
cores.

* rep (str, optional, default: "diffmap") — Representation of data used for the calculation.
By default, use Diffusion Map coordinates. If None, use the count matrix data.X.

* K (int, optional, default: 50) — Number of nearest neighbors to be considered during the
computation.

» full_speed (bool, optional, default: False) —

— If True, use multiple threads in constructing hnsw index. However, the kNN results are
not reproducible.

— Otherwise, use only one thread to make sure results are reproducible.

* target_change_per_node (float, optional, default: 2.0) — Target change per node to
stop ForceAtlas2.

* target_steps (int, optional, default: 5000) — Maximum number of iterations before stop-
ping the ForceAtlas2 algorithm.

» is3d (bool, optional, default: False) — If True, calculate 3D force-directed layout.
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* memory (int, optional, default: 8) — Memory size in GB for the Java FA2 component. By
default, use 8GB memory.

» random_state (int, optional, default: ®) — Random seed set for reproducing results.

* out_basis (str, optional, default: "fle") — Key name for calculated FLE coordinates to
store.

Return type None
Returns
* None
» Update data.obsm—

— data.obsm['X_"' + out_basis]: FLE coordinates of the data.

Examples

>>> pg.fle(data)

pegasus.net_umap

pegasus.net_umap (data, rep='pca’, n_jobs=- 1, n_components=2, n_neighbors=15, min_dist=0.5, spread=1.0,
densmap=False, dens_lambda=2.0, dens_frac=0.3, dens_var_shift=0.1, random_state=0,
select_frac=0.1, select_K=25, select_alpha=1.0, full_speed=False, net_alpha=0.1,
polish_learning_rate=10.0, polish_n_epochs=30, out_basis='net_umap")

Calculate Net-UMAP embedding of cells.
Net-UMAP is an approximated UMAP embedding using Deep Learning model to improve the speed.

In specific, the deep model used is MLLPRegressor, the scikit-learn implementation of Multi-layer Perceptron
regressor.

See [Li20] for details.
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

* rep (str, optional, default: "pca") — Representation of data used for the calculation. By
default, use PCA coordinates. If None, use the count matrix data.X.

* n_jobs (int, optional, default: -1) — Number of threads to use. If -1, use all physical CPU
cores.

* n_components (int, optional, default: 2) — Dimension of calculated UMAP coordinates.
By default, generate 2-dimensional data for 2D visualization.

* n_neighbors (int, optional, default: 15) — Number of nearest neighbors considered during
the computation.

e min_dist (float, optional, default: ®.5) — The effective minimum distance between em-
bedded data points.

 spread (float, optional, default: 1.0) — The effective scale of embedded data points.
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densmap (bool, optional, default: False) — Whether the density-augmented objective of
densMAP should be used for optimization, which will generate an embedding where local
densities are encouraged to be correlated with those in the original space.

dens_lambda (float, optional, default: 2.8) — Controls the regularization weight of the
density correlation term in densMAP. Only works when densmap is True. Larger values
prioritize density preservation over the UMAP objective, while values closer to O for the
opposite direction. Notice that setting this parameter to 8 is equivalent to running the original
UMAP algorithm.

dens_frac (float, optional, default: . 3) — Controls the fraction of epochs (between 0 and
1) where the density-augmented objective is used in densMAP. Only works when densmap is
True. The first (1 - dens_f£frac) fraction of epochs optimize the original UMAP objective
before introducing the density correlation term.

dens_var_shift (float, optional, default, §.1) — A small constant added to the variance
of local radii in the embedding when calculating the density correlation objective to prevent
numerical instability from dividing by a small number. Only works when densmap is True.

random_state (int, optional, default: ®) — Random seed set for reproducing results.
select_frac (float, optional, default: 8. 1) — Down sampling fraction on the cells.

select_K (int, optional, default: 25) — Number of neighbors to be used to estimate local
density for each data point for down sampling.

select_alpha (float, optional, default: 1.0)— Weight the down sample to be proportional
to radius ** select_alpha.

full_speed (bool, optional, default: False) —

— If True, use multiple threads in constructing hnsw index. However, the kNN results are
not reproducible.

— Otherwise, use only one thread to make sure results are reproducible.

net_alpha (float, optional, default: 0. 1) — L2 penalty (regularization term) parameter of
the deep regressor.

polish_learning_frac (float, optional, default: 10.0) — After running the deep regres-
sor to predict new coordinates, use polish_learning_frac * n_obs as the learning rate
to polish the coordinates.

polish _n_iter (int, optional, default: 30) — Number of iterations for polishing UMAP
run.

out_basis (str, optional, default: "net_umap") — Key name for calculated UMAP coor-
dinates to store.

Return type None

Returns

None

Update data.obsm—

— data.obsm['X_"' + out_basis]: Net UMAP coordinates of the data.
Update data.obs —

— data.obs['ds_selected']: Boolean array to indicate which cells are selected during
the down sampling phase.
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Examples

>>> pg.net_umap(data)

pegasus.net_fle

pegasus.net_f£fle(data, file_name=None, n_jobs=- 1, rep="diffmap', K=50, full_speed=Fulse,

target_change_per_node=2.0, target_steps=5000, is3d=False, memory=38, random_state=0,
select_frac=0.1, select_K=25, select_alpha=1.0, net_alpha=0.1, polish_target_steps=1500,

out_basis="net_fle")

Construct Net-Force-directed (FLE) graph.

Net-FLE is an approximated FLE graph using Deep Learning model to improve the speed.

In specific, the deep model used is MLPRegressor, the scikit-learn implementation of Multi-layer Perceptron

regressor.

See [Li20] for details.

Parameters

data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

file_name (str, optional, default: None) — Temporary file to store the coordinates as the
input to forceatlas2. If None, use tempfile.mkstemp to generate file name.

n_jobs (int, optional, default: -1) — Number of threads to use. If -1, use all physical CPU
cores.

rep (str, optional, default: "diffmap") — Representation of data used for the calculation.
By default, use Diffusion Map coordinates. If None, use the count matrix data.X.

K (int, optional, default: 50) — Number of nearest neighbors to be considered during the
computation.

full_speed (bool, optional, default: False) —

— If True, use multiple threads in constructing hnsw index. However, the kNN results are
not reproducible.

— Otherwise, use only one thread to make sure results are reproducible.

target_change_per_node (float, optional, default: 2.8) — Target change per node to
stop ForceAtlas?2.

target_steps (int, optional, default: 5000) — Maximum number of iterations before stop-
ping the ForceAtlas2 algorithm.

is3d (bool, optional, default: False) — If True, calculate 3D force-directed layout.

memory (int, optional, default: 8) — Memory size in GB for the Java FA2 component. By
default, use 8GB memory.

random_state (int, optional, default: ®) — Random seed set for reproducing results.
select_frac (float, optional, default: 8. 1) — Down sampling fraction on the cells.

select_K (int, optional, default: 25) — Number of neighbors to be used to estimate local
density for each data point for down sampling.

1.1. 1.6.0 April 16, 2022

63



https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

Pegasus Documentation, Release 1.6.0

» select_alpha (float, optional, default: 1.0)— Weight the down sample to be proportional

to radius ** select_alpha.

* net_alpha (float, optional, default: 8. 1) — L2 penalty (regularization term) parameter of
the deep regressor.

* polish_target_steps (int, optional, default: 1500) — After running the deep regressor
to predict new coordinate, Number of ForceAtlas2 iterations.

* out_basis (str, optional, default: "net_fle")— Key name for calculated FLE coordinates
to store.

Return type None
Returns
* None
* Update data.obsm—
— data.obsm['X_"' + out_basis]: Net FLE coordinates of the data.
* Update data.obs —

— data.obs['ds_selected']: Boolean array to indicate which cells are selected during
the down sampling phase.

Examples

>>> pg.net_fle(data)

Doublet Detection

infer_doublets(data[, channel_attr, ...]) Infer doublets by first calculating Scrublet-like
[Wolock18] doublet scores and then smartly deter-
mining an appropriate doublet score cutoff [Li20-2]

mark_doublets(data[, demux_attr, dbl_clusts]) Convert doublet prediction into doublet annotations that
Pegasus can recognize.

pegasus.infer_doublets

pegasus.infer_doublets (data, channel_attr=None, clust_attr=None, min_cell=100,
expected_doublet_rate=None, sim_doublet_ratio=2.0, n_prin_comps=30, k=None,
n_jobs=- 1, alpha=0.05, random_state=0, plot_hist='sample’,
manual_correction=None)

Infer doublets by first calculating Scrublet-like [Wolock 18] doublet scores and then smartly determining an ap-
propriate doublet score cutoff [Li20-2] .

This function should be called after clustering if clust_attr is not None. In this case, we will test if each cluster
is significantly enriched for doublets using Fisher’s exact test.

Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.
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» channel_attr (str, optional, default: None) — Attribute indicating sample channels. If
set, calculate scrublet-like doublet scores per channel.

clust_attr (str, optional, default: None) — Attribute indicating cluster labels. If set,
estimate proportion of doublets in each cluster and statistical significance.

min_cell (int, optional, default: 100) — Minimum number of cells per sample to calculate
doublet scores. For samples having less than ‘min_cell’ cells, doublet score calculation will
be skipped.

expected_doublet_rate (float, optional, default: None) — The expected doublet rate for
the experiment. By default, calculate the expected rate based on number of cells from the
10x multiplet rate table

sim_doublet_ratio (float, optional, default: 2.0) — The ratio between synthetic dou-
blets and observed cells.

* n_prin_comps (int, optional, default: 30) — Number of principal components.

* k (int, optional, default: None) — Number of observed cell neighbors. If None, k =
round(0.5 * sqrt(number of observed cells)). Total neighbors k_adj = round(k * (1.0 +
sim_doublet_ratio)).

* n_jobs (int, optional, default: -1) — Number of threads to use. If -1, use all physical CPU
cores.

alpha (float, optional, default: ®.05) — FDR significant level for cluster-level fisher exact
test.

» random_state (int, optional, default: ®) — Random seed for reproducing results.

* plot_hist (str, optional, default: sample) — If not None, plot diagnostic histograms us-
ing plot_hist as the prefix. If channel_attr is None, plot_hist.dbl.png is generated;
Otherwise, plot_hist.channel_name.dbl.png files are generated. Each figure consists
of 4 panels showing histograms of doublet scores for observed cells (panel 1, density in log
scale), simulated doublets (panel 2, density in log scale), KDE plot (panel 3) and signed
curvature plot (panel 4) of log doublet scores for simulated doublets.

* manual_correction (str, optional, default: None) — Use human guide to correct doublet
threshold for certain channels. This is string representing a comma-separately list. Each
item in the list represent one sample and the sample name and correction guide are separated
using ‘:”. The only correction guide supported is ‘peak’, which means cut at the center of the
peak. If only one sample available, use ** as the sample name.

Return type None
Returns
* None
» Update data.obs —
— data.obs['pred_dbl_type']: Predicted singlet/doublet types.

— data.uns['pred_dbl_cluster']: Only generated if ‘clust_attr’ is not None. This is a
dataframe with two columns, ‘Cluster’ and ‘Qval’. Only clusters with significantly more
doublets than expected will be recorded here.
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Examples

>>> pg.infer_doublets(data, channel_attr = 'Channel', clust_attr = 'Annotation')

pegasus.mark_doublets

pegasus.mark_doublets (data, demux_attr='demux_type', dbl_clusts=None)

Convert doublet prediction into doublet annotations that Pegasus can recognize. In addition, clusters in dbl_clusts
will be marked as doublets.

Must run infer_doublets first.
Parameters

e data (pegasusio.MultimodalData) — Annotated data matrix with rows for cells and
columns for genes.

» demux_attr (str, optional, default: demux_type) — Attribute indicating singlets/doublets
that Pegasus can recognize. Currently this is ‘demux_type’, which is also used for hashing.

e dbl_clusts (str, optional, default: None) — Indicate which clusters should be marked as
all doublets. It takes the format of ‘clust:valuel,value2,...’, where ‘clust’ refers to the cluster
attribute.

Return type None
Returns
* None
» Update data.obs —

— data.obs[demux_attr]: Singlet/doublet annotation.

Examples

>>> pg.mark_doublets(data, dbl_clusts='Annotation:B/T doublets')

Gene Module Score

calc_signature_score(data, signatures|, ...]) Calculate signature / gene module score.

pegasus.calc_signature_score

pegasus.calc_signature_score (data, signatures, n_bins=50, show_omitted_genes=False, random_state=0)

Calculate signature / gene module score. [Li20-1]
This is an improved version of implementation in [Jerby-Arnon18].
Parameters

e data (MultimodalData, UnimodalData, or anndata.AnnData object.) — Single cell ex-
pression data.
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» signatures (Dict[str, List[str]] or str)- Thisargument accepts either a dictionary
or a string. If signatures is a dictionary, it can contain multiple signature score calculation
requests. Each key in the dictionary represents a separate signature score calculation and its
corresponding value contains a list of gene symbols. Each score will be stored in data.obs
field with key as the keyword. If signatures is a string, it should refer to a Gene Matrix
Transposed (GMT)-formatted file. Pegasus will load signatures from the GMT file.

Pegasus also provide 5 default signature panels for each of human and mouse. They are cell_cycle_human.

— cell_cycle_human contains two cell-cycle signatures, G1/S and G2/M, obtained
from Tirosh et al. 2016. We also updated gene symbols according to Seurat’s cc.
genes.updated.2019 vector. We additionally calculate signature scores cycling
and cycle_diff, which are max{G2/M, G1/S} and G2/M - G1/S respectively. We
provide predicted cell cycle phases in data.obs['predicted_phase'] in case it is
useful. predicted_phase is predicted based on G1/S and G2 /M scores. First, we iden-
tify GO cells. We apply KMeans algorithm to obtain 2 clusters based on the cycling
signature. GO cells are from the cluster with smallest mean value. For each cell from
the other cluster, if G1/S > G2/NM, it is a G1/S cell, otherwise it is a G2 /M cell.

— gender_human contains two gender-specific signatures, female_score and
male_score. Genes were selected based on DE analysis between genders based
on 8 channels of bone marrow data from HCA Census of Immune Cells and the brain
nuclei data from Gaublomme and Li et al, 2019, Nature Communications. After
calculation, three signature scores will be calculated: female_score, male_score
and gender_score. female_score and male_score are calculated based on female
and male signatures respectively and a larger score represent a higher likelihood
of that gender. gender_score is calculated as male_score - female_score. A
large positive score likely represents male and a large negative score likely represents
female. Pegasus also provides predicted gender for each cell based on gender_score,
which is stored in data.obs['predicted_gender']. To predict genders, we apply
the KMeans algorithm to the gender_score and ask for 3 clusters. The clusters
with a minimum and maximum clauster centers are predicted as female and male
respectively and the cluster in the middle is predicted as uncertain. Note that
this approach is conservative and it is likely that users can predict genders based on
gender_score for cells in the uncertain cluster with a reasonable accuracy.

— mitochondrial_genes_human contains two signatures, mito_genes and
mito_ribo. mito_genes contains 13 mitocondrial genes from chrM and mito_ribo
contains mitocondrial ribosomal genes that are not from chrM. Note that mito_genes
correlates well with percent of mitocondrial UMIs and mito_ribo does not.

— ribosomal_genes_human contains one signature, ribo_genes, which includes ribo-
somal genes from both large and small units.

— apoptosis_human contains one signature, apoptosis, which includes apoptosis-
related genes from the KEGG pathway.

— cell_cycle_mouse, gender_mouse, mitochondrial_genes_mouse,
ribosomal_genes_mouse and apoptosis_mouse are the corresponding signa-
tures for mouse. Gene symbols are directly translated from human genes.

* n_bins (int, optional, default: 50) — Number of bins on expression levels for grouping
genes.

» show_omitted_genes (bool, optional, default False) — Signature genes that are not ex-
pressed in the data will be omitted. By default, pegasus does not report which genes are
omitted. If this option is turned on, report omitted genes.
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» random_state (int, optional, default: 0) — Random state used by KMeans if signature ==
gender_human or gender_mouse.

Return type None
Returns
* None.
e Update data.obs —
— data.obs["key"]: signature / gene module score for signature “key”
» Update data.var —

— data.var["mean"]: Mean expression of each gene across all cells. Only updated if
“mean” does not exist in data.var.

— data.var["bins"]: Bin category for each gene. Only updated if data.uns[*“sig_n_bins”]
is updated.

* Update data.obsm—

— data.obsm["sig_background"]: Expected signature score for each bin category. Only
updated if data.uns[*“sig_n_bins”] is updated.

» Update data.uns —

— data.uns["sig_n_bins"]: Number of bins to partition genes into. Only updated if
“sig_n_bins” does not exist or the recorded number of bins does not match n_bins.

Examples

>>> pg.calc_signature_score(data, {"T_cell_sig": ["CD3D", "CD3E", "CD3G", "TRAC"]})
>>> pg.calc_signature_score(data, "cell_cycle_human')

Label Transfer

train_scarches_scanvi(data, dir_path, label) Run scArches training.
predict_scarches_scanvi(data, dir_path, label) Run scArches training.

pegasus.train_scarches_scanvi

pegasus.train_scarches_scanvi (data, dir_path, label, unlabeled_category='Unknown’',
features="highly_variable_features', matkey="raw.X', n_jobs=- 1,
random_state=0, max_epochs=None, batch=None,
categorical_covariate_keys=None, continuous_covariate_keys=None,
semisupervised_max_epochs=None, n_samples_per_label=None,
use_gpu=None, arches_params={'dropout_rate': 0.2, 'encode_covariates':
True, 'n_layers': 2, 'use_batch_norm': 'none', 'use_layer_norm': 'both'})

Run scArches training.
This is a wrapper of scvitools package.

Parameters
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data (MultimodalData.) — Annotated data matrix with rows for cells and columns for
genes.

dir_path (str.) — Save the model to this directory.

label (str.) — The obs key representing labels.

e unlabeled_category (str, default: "Unknown") — Value used for unlabeled cells in
label.

features (str, optional, default: "highly_variable_features") - Keyword in data.
var, which refers to a boolean array. If None, all features will be selected.

» matkey (str, optional, default: "raw.X") — Matrix key for the raw count

* n_jobs (int, optional, default: -1.) — Number of threads to use. -1 refers to using all
physical CPU cores.

» random_state (int, optional, default: 0.) — Seed for random number generator

max_epochs (int | None, optional, default: None.) — Maximum number of unsupervised
training epochs. Defaults to np.min([round((20000 / n_cells) * 400), 400])

batch (str, optional, default: None.) — If only one categorical covariate, the obs key repre-
senting batches that should be corrected for, default is None.

» categorical_covariate_keys (List[str]) - If multiple categorical covariates, a list of
obs keys listing categorical covariates that should be corrected for, default is None.

continuous_covariate_keys (List[str])— A list of obs keys listing continuous covari-
ates that should be corrected for, default is None.

» semisupervised_max_epochs (int | None, optional, default: None.) — Maximum num-
ber of semisupervised training epochs. Defaults to np.min([round(np.sqrt(max_epochs)),
20D)

* n_samples_per_label (int, optional, default: None.) — Number of subsamples for each
label class to sample per epoch. By default, there is no label subsampling.

e use_gpu (str | int | bool | None)- Use default GPU if available (if None or True),
or index of GPU to use (if int), or name of GPU (if str, e.g., ‘cuda:0’), or use CPU (if False).

» arches_params (dict.) — Hyperparameters for VAE. See https://docs.scvi-tools.org/en/
stable/api/reference/scvi.module. VAE.html#scvi.module. VAE for more details

Returns

* data.obsm['X_scVI']: The embedding calculated by scVI.

* data.obsm['X_scanVI']: The embedding calculated by scanVI.
Return type Update data.obsm
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Examples

>>> pg.train_scarches_scanvi(data, dir_path="scanvi_model/", label="celltype",.
—matkey="counts", batch="tech", n_samples_per_label=100)

pegasus.predict_scarches_scanvi

pegasus.predict_scarches_scanvi (data, dir_path, label, predictions='predictions’, matkey="raw.X', n_jobs=-
1, random_state=0, max_epochs=None, batch=None,
categorical_covariate_keys=None, continuous_covariate_keys=None,
use_gpu=None)

Run scArches training.
This is a wrapper of scvitools package.
Parameters

e data (MultimodalData.) — Annotated data matrix with rows for cells and columns for
genes.

dir_path (str.) — Save the model to this directory.

label (str.) — The obs key representing labels.

predictions (str,, optional, default: "predictions") — The obs key to store predicted
labels.

* matkey (str, optional, default: "raw.X") — Matrix key for the raw count

* n_jobs (int, optional, default: -1.) — Number of threads to use. -1 refers to using all
physical CPU cores.

» random_state (int, optional, default: 0.) — Seed for random number generator

max_epochs (int | None, optional, default: None.) — Maximum number of training
epochs. Defaults to np.min([round((20000 / n_cells) * 100), 100])

batch (str, optional, default: None.) — If only one categorical covariate, the obs key repre-
senting batches that should be corrected for, default is None.

* categorical_covariate_keys (List[str]) - If multiple categorical covariates, a list of
obs keys listing categorical covariates that should be corrected for, default is None.

» continuous_covariate_keys (List[str])— A list of obs keys listing continuous covari-
ates that should be corrected for, default is None.

* use_gpu (str | int | bool | None) - Use default GPU if available (if None or True),
or index of GPU to use (if int), or name of GPU (if str, e.g., ‘cuda:0’), or use CPU (if False).

Returns
* data.obsm['X_scanVI']: The embedding calculated by scanVI.
* data.obsm[predictions]: The predicted labels by scanVI.
Return type Update data.obsm

70 Chapter 1. Release Highlights in Current Stable


https://github.com/scverse/scvi-tools

Pegasus Documentation, Release 1.6.0

Examples

>>> pg.predict_scarches_scanvi(data, dir_path="scanvi_model/", label="celltype",.
—matkey="counts", batch="tech")

Differential Expression and Gene Set Enrichment Analysis

de_analysis(data, cluster[, condition, ...])

Perform Differential Expression (DE) Analysis on data.

markers(data[, head, de_key, alpha]) Extract DE results into a human readable structure.
write_results_to_excel(results, output_file) Write DE analysis results into Excel workbook.
fgsea(data, log2fc_key, pathways[, de_key, ...]) Perform Gene Set Enrichment Analysis using fGSEA.

pegasus.de_analysis

pegasus.de_analysis(data, cluster, condition=None, subset=None, de_key='de_res', n_jobs=- 1, t=False,

fisher=False, temp_folder=None, verbose=True)

Perform Differential Expression (DE) Analysis on data.

The analysis considers one cluster at one time, comparing gene expression levels on cells within the cluster with
all the others using a number of statistical tools, and determining up-regulated genes and down-regulated genes

of the cluster.

Mann-Whitney U test and AUROC are calculated by default. Welch’s T test and Fisher’s Exact test are optionally.

The scalability performance on calculating all the test statistics is improved by the inspiration from Presto.

Parameters

data (MultimodalData, UnimodalData, or anndata.AnnData) — Data matrix with rows
for cells and columns for genes.

cluster (str) — Cluster labels used in DE analysis. Must exist in data. obs.

condition (str, optional, default: None) — Sample attribute used as condition in DE anal-
ysis. If None, no condition is considered; otherwise, must exist in data. obs. If condition
is used, the DE analysis will be performed on cells of each level of data.obs[condition]
respectively, and collect the results after finishing.

subset (List[str], optional, default: None) — Perform DE analysis on only a subset of
cluster IDs. Cluster ID subset is specified as a list of strings, such as [clust_1,clust_3,
clust_5], where all IDs must exist in data.obs[cluster].

de_key (str, optional, default: "de_res"