Source code for pegasus.tools.visualization

import time
import numpy as np
import scipy
import umap as umap_module
import uuid
from threadpoolctl import threadpool_limits
from pegasusio import MultimodalData
from pynndescent import NNDescent

from pegasus.tools import (
    eff_n_jobs,
    update_rep,
    X_from_rep,
    W_from_rep,
    get_neighbors,
    neighbors,
    net_train_and_predict,
    calculate_nearest_neighbors,
    calculate_affinity_matrix,
    construct_graph,
)

import logging
logger = logging.getLogger(__name__)

from pegasusio import timer



def calc_tsne(
    X,
    nthreads,
    no_dims,
    perplexity,
    early_exag_coeff,
    learning_rate,
    rand_seed,
    initialization=None,
    max_iter=750,
    stop_early_exag_iter=250,
    mom_switch_iter=250,
):
    """
    TODO: Calculate t-SNE embeddings using the FIt-SNE package
    """
    # FItSNE will change X content

    # Check if fftw3 is installed.
    import ctypes.util

    fftw3_loc = ctypes.util.find_library("fftw3")
    if fftw3_loc is None:
        raise Exception("Please install 'fftw3' first to use the FIt-SNE feature!")

    try:
        from fitsne import FItSNE
    except ModuleNotFoundError:
        import sys
        logger.error("Need FItSNE!  Try 'pip install fitsne' or 'conda install -c conda-forge pyfit-sne'.")
        sys.exit(-1)

    return FItSNE(
        X,
        nthreads=nthreads,
        no_dims=no_dims,
        perplexity=perplexity,
        early_exag_coeff=early_exag_coeff,
        learning_rate=learning_rate,
        rand_seed=rand_seed,
        initialization=initialization,
        max_iter=max_iter,
        stop_early_exag_iter=stop_early_exag_iter,
        mom_switch_iter=mom_switch_iter,
    )

class DummyNNDescent(NNDescent):
    def __init__(self):
        None

# Running umap using our own kNN indices
def calc_umap(
    X,
    n_components,
    n_neighbors,
    min_dist,
    spread,
    random_state,
    densmap,
    dens_lambda,
    dens_frac,
    dens_var_shift,
    init="spectral",
    n_epochs=None,
    learning_rate=1.0,
    knn_indices=None,
    knn_dists=None,
):
    """
    TODO: Typing
    """
    umap_obj = umap_module.UMAP(
        n_components=n_components,
        n_neighbors=n_neighbors,
        min_dist=min_dist,
        spread=spread,
        random_state=random_state,
        init=init,
        n_epochs=n_epochs,
        learning_rate=learning_rate,
        densmap=densmap,
        dens_lambda=dens_lambda,
        dens_frac=dens_frac,
        dens_var_shift=dens_var_shift,
        verbose=True,
    )

    if X.shape[0] < 4096 or knn_indices is None:
        logger.info(f"Using umap kNN graph because number of cells {X.shape[0]} is smaller than 4096 or knn_indices is not provided.")
    else:
        assert knn_dists is not None, "No kNN graph is found! Please calculate it by 'pegasus.neighbors' function first!"
        dummy_nnd = DummyNNDescent()
        umap_obj.precomputed_knn = (knn_indices, knn_dists, dummy_nnd)

    return umap_obj.fit_transform(X)


def calc_force_directed_layout(
    W,
    file_name,
    n_jobs,
    target_change_per_node,
    target_steps,
    is3d,
    memory,
    random_state,
    init=None,
):
    """
    TODO: Typing
    """
    G = construct_graph(W)
    try:
        import forceatlas2 as fa2
    except ModuleNotFoundError:
        import sys
        logger.error("Need forceatlas2-python!  Try 'pip install forceatlas2-python'.")
        sys.exit(-1)
    return fa2.forceatlas2(
            file_name,
            graph=G,
            n_jobs=n_jobs,
            target_change_per_node=target_change_per_node,
            target_steps=target_steps,
            is3d=is3d,
            memory=memory,
            random_state=random_state,
            init=init,
        )

[docs]@timer(logger=logger) def tsne( data: MultimodalData, rep: str = "pca", rep_ncomps: int = None, n_jobs: int = -1, n_components: int = 2, perplexity: float = 30, early_exaggeration: int = 12, learning_rate: float = "auto", initialization: str = "pca", random_state: int = 0, out_basis: str = "tsne", ) -> None: """Calculate t-SNE embedding of cells using the FIt-SNE package. This function uses fitsne_ package. See [Linderman19]_ for details on FIt-SNE algorithm. .. _fitsne: https://github.com/KlugerLab/FIt-SNE Parameters ---------- data: ``pegasusio.MultimodalData`` Annotated data matrix with rows for cells and columns for genes. rep: ``str``, optional, default: ``"pca"`` Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``. rep_ncomps: `int`, optional (default: None) Number of components to be used in `rep`. If rep_ncomps == None, use all components; otherwise, use the minimum of rep_ncomps and rep's dimensions. n_jobs: ``int``, optional, default: ``-1`` Number of threads to use. If ``-1``, use all physical CPU cores. n_components: ``int``, optional, default: ``2`` Dimension of calculated FI-tSNE coordinates. By default, generate 2-dimensional data for 2D visualization. perplexity: ``float``, optional, default: ``30`` The perplexity is related to the number of nearest neighbors used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. early_exaggeration: ``int``, optional, default: ``12`` Controls how tight natural clusters in the original space are in the embedded space, and how much space will be between them. learning_rate: ``float``, optional, default: ``auto`` By default, the learning rate is determined automatically as max(data.shape[0] / early_exaggeration, 200). See [Belkina19]_ and [Kobak19]_ for details. initialization: ``str``, optional, default: ``pca`` Initialization can be either ``pca`` or ``random`` or np.ndarray. By default, we use ``pca`` initialization according to [Kobak19]_. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. out_basis: ``str``, optional, default: ``"fitsne"`` Key name for calculated FI-tSNE coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: FI-tSNE coordinates of the data. Examples -------- >>> pg.tsne(data) """ rep = update_rep(rep) n_jobs = eff_n_jobs(n_jobs) X = X_from_rep(data, rep, rep_ncomps).astype(np.float64) if learning_rate == "auto": learning_rate = max(X.shape[0] / early_exaggeration, 200.0) if initialization == "random": initialization = None elif initialization == "pca": if rep == "pca": initialization = X[:, 0:n_components].copy() else: from sklearn.decomposition import PCA pca = PCA(n_components=n_components, random_state=random_state) with threadpool_limits(limits = n_jobs): initialization = np.ascontiguousarray(pca.fit_transform(X)) initialization = initialization / np.std(initialization[:, 0]) * 0.0001 else: assert isinstance(initialization, np.ndarray) and initialization.ndim == 2 and initialization.shape[0] == X.shape[0] and initialization.shape[1] == n_components if initialization.dtype != np.float64: initialization = initialization.astype(np.float64) key = f"X_{out_basis}" data.obsm[key] = calc_tsne( X, n_jobs, n_components, perplexity, early_exaggeration, learning_rate, random_state, initialization, ) data.register_attr(key, "basis")
[docs]@timer(logger=logger) def umap( data: MultimodalData, rep: str = "pca", rep_ncomps: int = None, n_components: int = 2, n_neighbors: int = 15, min_dist: float = 0.5, spread: float = 1.0, densmap: bool = False, dens_lambda: float = 2.0, dens_frac: float = 0.3, dens_var_shift: float = 0.1, n_jobs: int = -1, full_speed: bool = False, use_cache: bool = True, random_state: int = 0, out_basis: str = "umap", ) -> None: """Calculate UMAP embedding of cells. This function uses umap-learn_ package. See [McInnes18]_ for details on UMAP. .. _umap-learn: https://github.com/lmcinnes/umap Parameters ---------- data: ``pegasusio.MultimodalData`` Annotated data matrix with rows for cells and columns for genes. rep: ``str``, optional, default: ``"pca"`` Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``. rep_ncomps: `int`, optional (default: None) Number of components to be used in `rep`. If rep_ncomps == None, use all components; otherwise, use the minimum of rep_ncomps and rep's dimensions. n_components: ``int``, optional, default: ``2`` Dimension of calculated UMAP coordinates. By default, generate 2-dimensional data for 2D visualization. n_neighbors: ``int``, optional, default: ``15`` Number of nearest neighbors considered during the computation. min_dist: ``float``, optional, default: ``0.5`` The effective minimum distance between embedded data points. spread: ``float``, optional, default: ``1.0`` The effective scale of embedded data points. densmap: ``bool``, optional, default: ``False`` Whether the density-augmented objective of densMAP should be used for optimization, which will generate an embedding where local densities are encouraged to be correlated with those in the original space. dens_lambda: ``float``, optional, default: ``2.0`` Controls the regularization weight of the density correlation term in densMAP. Only works when *densmap* is ``True``. Larger values prioritize density preservation over the UMAP objective, while values closer to 0 for the opposite direction. Notice that setting this parameter to ``0`` is equivalent to running the original UMAP algorithm. dens_frac: ``float``, optional, default: ``0.3`` Controls the fraction of epochs (between 0 and 1) where the density-augmented objective is used in densMAP. Only works when *densmap* is ``True``. The first ``(1 - dens_frac)`` fraction of epochs optimize the original UMAP objective before introducing the density correlation term. dens_var_shift: ``float``, optional, default, ``0.1`` A small constant added to the variance of local radii in the embedding when calculating the density correlation objective to prevent numerical instability from dividing by a small number. Only works when *densmap* is ``True``. n_jobs: ``int``, optional, default: ``-1`` Number of threads to use for computing kNN graphs. If ``-1``, use all physical CPU cores. full_speed: ``bool``, optional, default: ``False`` * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible. * Otherwise, use only one thread to make sure results are reproducible. use_cache: ``bool``, optional, default: ``True`` If use_cache and found cached knn results, will not recompute. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. out_basis: ``str``, optional, default: ``"umap"`` Key name for calculated UMAP coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: UMAP coordinates of the data. Examples -------- >>> pg.umap(data) """ rep = update_rep(rep) X = X_from_rep(data, rep, rep_ncomps) knn_indices, knn_dists, n_neighbors = get_neighbors(data, K = n_neighbors, rep = rep, n_jobs = n_jobs, random_state = random_state, full_speed = full_speed, use_cache = use_cache) knn_indices = np.insert(knn_indices[:, 0 : n_neighbors - 1], 0, range(data.shape[0]), axis=1) knn_dists = np.insert(knn_dists[:, 0 : n_neighbors - 1], 0, 0.0, axis=1) key = f"X_{out_basis}" data.obsm[key] = calc_umap( X, n_components=n_components, n_neighbors=n_neighbors, min_dist=min_dist, spread=spread, densmap=densmap, dens_lambda=dens_lambda, dens_frac=dens_frac, dens_var_shift=dens_var_shift, random_state=random_state, knn_indices=knn_indices, knn_dists=knn_dists, ) data.register_attr(key, "basis")
[docs]@timer(logger=logger) def fle( data: MultimodalData, file_name: str = None, n_jobs: int = -1, rep: str = "diffmap", rep_ncomps: int = None, K: int = 50, full_speed: bool = False, target_change_per_node: float = 2.0, target_steps: int = 5000, is3d: bool = False, memory: int = 8, random_state: int = 0, out_basis: str = "fle", ) -> None: """Construct the Force-directed (FLE) graph. This implementation uses forceatlas2-python_ package, which is a Python wrapper of ForceAtlas2_. See [Jacomy14]_ for details on FLE. .. _forceatlas2-python: https://github.com/klarman-cell-observatory/forceatlas2-python .. _ForceAtlas2: https://github.com/klarman-cell-observatory/forceatlas2 Parameters ---------- data: ``pegasusio.MultimodalData`` Annotated data matrix with rows for cells and columns for genes. file_name: ``str``, optional, default: ``None`` Temporary file to store the coordinates as the input to forceatlas2. If ``None``, use ``tempfile.mkstemp`` to generate file name. n_jobs: ``int``, optional, default: ``-1`` Number of threads to use. If ``-1``, use all physical CPU cores. rep: ``str``, optional, default: ``"diffmap"`` Representation of data used for the calculation. By default, use Diffusion Map coordinates. If ``None``, use the count matrix ``data.X``. rep_ncomps: ``int``, optional (default: None) Number of components to be used in `rep`. If rep_ncomps == None, use all components; otherwise, use the minimum of rep_ncomps and rep's dimensions. K: ``int``, optional, default: ``50`` Number of nearest neighbors to be considered during the computation. full_speed: ``bool``, optional, default: ``False`` * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible. * Otherwise, use only one thread to make sure results are reproducible. target_change_per_node: ``float``, optional, default: ``2.0`` Target change per node to stop ForceAtlas2. target_steps: ``int``, optional, default: ``5000`` Maximum number of iterations before stopping the ForceAtlas2 algorithm. is3d: ``bool``, optional, default: ``False`` If ``True``, calculate 3D force-directed layout. memory: ``int``, optional, default: ``8`` Memory size in GB for the Java FA2 component. By default, use 8GB memory. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. out_basis: ``str``, optional, default: ``"fle"`` Key name for calculated FLE coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: FLE coordinates of the data. Examples -------- >>> pg.fle(data) """ if file_name is None: import tempfile _, file_name = tempfile.mkstemp() rep = update_rep(rep) n_jobs = eff_n_jobs(n_jobs) if ("W_" + rep) not in data.uns: neighbors( data, K=K, rep=rep, n_comps=rep_ncomps, n_jobs=n_jobs, random_state=random_state, full_speed=full_speed, ) key = f"X_{out_basis}" data.obsm[key] = calc_force_directed_layout( W_from_rep(data, rep), file_name, n_jobs, target_change_per_node, target_steps, is3d, memory, random_state, ) data.register_attr(key, "basis")
@timer(logger=logger) def select_cells(distances, frac, K=25, alpha=1.0, random_state=0): """ TODO: documentation (not user API) """ nsample = distances.shape[0] assert K >= 2 if K > distances.shape[1] + 1: logger.info(f"Warning: in select_cells, K = {K} > the number of calculated nearest neighbors {distances.shape[1] + 1}!\nSet K to {distances.shape[1] + 1}") K = distances.shape[1] + 1 probs = np.zeros(nsample) if alpha == 0.0: probs[:] = 1.0 # uniform elif alpha == 1.0: probs[:] = distances[:, K - 2] else: probs[:] = distances[:, K - 2] ** alpha probs /= probs.sum() np.random.seed(random_state) selected = np.zeros(nsample, dtype=bool) selected[ np.random.choice(nsample, size=int(nsample * frac), replace=False, p=probs) ] = True return selected
[docs]@timer(logger=logger) def net_umap( data: MultimodalData, rep: str = "pca", n_jobs: int = -1, n_components: int = 2, n_neighbors: int = 15, min_dist: float = 0.5, spread: float = 1.0, densmap: bool = False, dens_lambda: float = 2.0, dens_frac: float = 0.3, dens_var_shift: float = 0.1, random_state: int = 0, select_frac: float = 0.1, select_K: int = 25, select_alpha: float = 1.0, full_speed: bool = False, use_cache: bool = True, net_alpha: float = 0.1, polish_learning_rate: float = 10.0, polish_n_epochs: int = 30, out_basis: str = "net_umap", ) -> None: """Calculate Net-UMAP embedding of cells. Net-UMAP is an approximated UMAP embedding using Deep Learning model to improve the speed. In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor. See [Li20]_ for details. .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html Parameters ---------- data: ``pegasusio.MultimodalData`` Annotated data matrix with rows for cells and columns for genes. rep: ``str``, optional, default: ``"pca"`` Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``. n_jobs: ``int``, optional, default: ``-1`` Number of threads to use. If ``-1``, use all physical CPU cores. n_components: ``int``, optional, default: ``2`` Dimension of calculated UMAP coordinates. By default, generate 2-dimensional data for 2D visualization. n_neighbors: ``int``, optional, default: ``15`` Number of nearest neighbors considered during the computation. min_dist: ``float``, optional, default: ``0.5`` The effective minimum distance between embedded data points. spread: ``float``, optional, default: ``1.0`` The effective scale of embedded data points. densmap: ``bool``, optional, default: ``False`` Whether the density-augmented objective of densMAP should be used for optimization, which will generate an embedding where local densities are encouraged to be correlated with those in the original space. dens_lambda: ``float``, optional, default: ``2.0`` Controls the regularization weight of the density correlation term in densMAP. Only works when *densmap* is ``True``. Larger values prioritize density preservation over the UMAP objective, while values closer to 0 for the opposite direction. Notice that setting this parameter to ``0`` is equivalent to running the original UMAP algorithm. dens_frac: ``float``, optional, default: ``0.3`` Controls the fraction of epochs (between 0 and 1) where the density-augmented objective is used in densMAP. Only works when *densmap* is ``True``. The first ``(1 - dens_frac)`` fraction of epochs optimize the original UMAP objective before introducing the density correlation term. dens_var_shift: ``float``, optional, default, ``0.1`` A small constant added to the variance of local radii in the embedding when calculating the density correlation objective to prevent numerical instability from dividing by a small number. Only works when *densmap* is ``True``. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. select_frac: ``float``, optional, default: ``0.1`` Down sampling fraction on the cells. select_K: ``int``, optional, default: ``25`` Number of neighbors to be used to estimate local density for each data point for down sampling. select_alpha: ``float``, optional, default: ``1.0`` Weight the down sample to be proportional to ``radius ** select_alpha``. full_speed: ``bool``, optional, default: ``False`` * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible. * Otherwise, use only one thread to make sure results are reproducible. use_cache: ``bool``, optional, default: ``True`` If use_cache and found cached knn results, will not recompute. net_alpha: ``float``, optional, default: ``0.1`` L2 penalty (regularization term) parameter of the deep regressor. polish_learning_frac: ``float``, optional, default: ``10.0`` After running the deep regressor to predict new coordinates, use ``polish_learning_frac`` * ``n_obs`` as the learning rate to polish the coordinates. polish_n_iter: ``int``, optional, default: ``30`` Number of iterations for polishing UMAP run. out_basis: ``str``, optional, default: ``"net_umap"`` Key name for calculated UMAP coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: Net UMAP coordinates of the data. Update ``data.obs``: * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase. Examples -------- >>> pg.net_umap(data) """ rep = update_rep(rep) n_jobs = eff_n_jobs(n_jobs) knn_indices, knn_dists, select_K = get_neighbors(data, K = select_K, rep = rep, n_jobs = n_jobs, random_state = random_state, full_speed = full_speed, use_cache = use_cache) selected = select_cells( knn_dists, select_frac, K=select_K, alpha=select_alpha, random_state=random_state, ) X_full = X_from_rep(data, rep) X = X_full[selected, :] if data.shape[0] < n_neighbors: logger.warning(f"Warning: Number of samples = {data.shape[0]} < K = {n_neighbors}!\n Set K to {data.shape[0]}.") n_neighbors = data.shape[0] ds_indices_key = "ds_" + rep + "_knn_indices" # ds refers to down-sampling ds_distances_key = "ds_" + rep + "_knn_distances" indices, distances, n_neighbors = calculate_nearest_neighbors( X, K=n_neighbors, n_jobs=n_jobs, random_state=random_state, full_speed=full_speed, ) data.uns[ds_indices_key] = indices data.uns[ds_distances_key] = distances knn_indices = np.insert( data.uns[ds_indices_key][:, 0 : n_neighbors - 1], 0, range(X.shape[0]), axis=1 ) knn_dists = np.insert( data.uns[ds_distances_key][:, 0 : n_neighbors - 1], 0, 0.0, axis=1 ) X_umap = calc_umap( X, n_components=n_components, n_neighbors=n_neighbors, min_dist=min_dist, spread=spread, densmap=densmap, dens_lambda=dens_lambda, dens_frac=dens_frac, dens_var_shift=dens_var_shift, random_state=random_state, knn_indices=knn_indices, knn_dists=knn_dists, ) data.uns["X_" + out_basis + "_small"] = X_umap data.obs["ds_selected"] = selected Y_init = np.zeros((data.shape[0], n_components), dtype=np.float64) Y_init[selected, :] = X_umap Y_init[~selected, :] = net_train_and_predict( X, X_umap, X_full[~selected, :], net_alpha, n_jobs, random_state, verbose=True ) data.obsm["X_" + out_basis + "_pred"] = Y_init knn_indices, knn_dists, n_neighbors = get_neighbors(data, K = n_neighbors, rep = rep, n_jobs = n_jobs, random_state = random_state, full_speed = full_speed, use_cache = use_cache) knn_indices = np.insert(knn_indices[:, 0 : n_neighbors - 1], 0, range(data.shape[0]), axis=1) knn_dists = np.insert(knn_dists[:, 0 : n_neighbors - 1], 0, 0.0, axis=1) key = f"X_{out_basis}" data.obsm[key] = calc_umap( X_full, n_components=n_components, n_neighbors=n_neighbors, min_dist=min_dist, spread=spread, densmap=densmap, dens_lambda=dens_lambda, dens_frac=dens_frac, dens_var_shift=dens_var_shift, random_state=random_state, init=Y_init, n_epochs=polish_n_epochs, learning_rate=polish_learning_rate, knn_indices=knn_indices, knn_dists=knn_dists, ) data.register_attr(key, "basis")
[docs]@timer(logger=logger) def net_fle( data: MultimodalData, file_name: str = None, n_jobs: int = -1, rep: str = "diffmap", K: int = 50, full_speed: bool = False, use_cache: bool = True, target_change_per_node: float = 2.0, target_steps: int = 5000, is3d: bool = False, memory: int = 8, random_state: int = 0, select_frac: float = 0.1, select_K: int = 25, select_alpha: float = 1.0, net_alpha: float = 0.1, polish_target_steps: int = 1500, out_basis: str = "net_fle", ) -> None: """Construct Net-Force-directed (FLE) graph. Net-FLE is an approximated FLE graph using Deep Learning model to improve the speed. In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor. See [Li20]_ for details. .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html Parameters ---------- data: ``pegasusio.MultimodalData`` Annotated data matrix with rows for cells and columns for genes. file_name: ``str``, optional, default: ``None`` Temporary file to store the coordinates as the input to forceatlas2. If ``None``, use ``tempfile.mkstemp`` to generate file name. n_jobs: ``int``, optional, default: ``-1`` Number of threads to use. If ``-1``, use all physical CPU cores. rep: ``str``, optional, default: ``"diffmap"`` Representation of data used for the calculation. By default, use Diffusion Map coordinates. If ``None``, use the count matrix ``data.X``. K: ``int``, optional, default: ``50`` Number of nearest neighbors to be considered during the computation. full_speed: ``bool``, optional, default: ``False`` * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible. * Otherwise, use only one thread to make sure results are reproducible. use_cache: ``bool``, optional, default: ``True`` If use_cache and found cached knn results, will not recompute. target_change_per_node: ``float``, optional, default: ``2.0`` Target change per node to stop ForceAtlas2. target_steps: ``int``, optional, default: ``5000`` Maximum number of iterations before stopping the ForceAtlas2 algorithm. is3d: ``bool``, optional, default: ``False`` If ``True``, calculate 3D force-directed layout. memory: ``int``, optional, default: ``8`` Memory size in GB for the Java FA2 component. By default, use 8GB memory. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. select_frac: ``float``, optional, default: ``0.1`` Down sampling fraction on the cells. select_K: ``int``, optional, default: ``25`` Number of neighbors to be used to estimate local density for each data point for down sampling. select_alpha: ``float``, optional, default: ``1.0`` Weight the down sample to be proportional to ``radius ** select_alpha``. net_alpha: ``float``, optional, default: ``0.1`` L2 penalty (regularization term) parameter of the deep regressor. polish_target_steps: ``int``, optional, default: ``1500`` After running the deep regressor to predict new coordinate, Number of ForceAtlas2 iterations. out_basis: ``str``, optional, default: ``"net_fle"`` Key name for calculated FLE coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: Net FLE coordinates of the data. Update ``data.obs``: * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase. Examples -------- >>> pg.net_fle(data) """ if file_name is None: if file_name is None: import tempfile _, file_name = tempfile.mkstemp() rep = update_rep(rep) n_jobs = eff_n_jobs(n_jobs) if ("W_" + rep) not in data.uns: neighbors( data, K=K, rep=rep, n_jobs=n_jobs, random_state=random_state, full_speed=full_speed, ) knn_indices, knn_dists, select_K = get_neighbors(data, K = select_K, rep = rep, n_jobs = n_jobs, random_state = random_state, full_speed = full_speed, use_cache = use_cache) selected = select_cells( knn_dists, select_frac, K=select_K, alpha=select_alpha, random_state=random_state, ) X_full = X_from_rep(data, rep) X = X_full[selected, :] ds_indices_key = "ds_" + rep + "_knn_indices" ds_distances_key = "ds_" + rep + "_knn_distances" indices, distances, K = calculate_nearest_neighbors( X, K=K, n_jobs=n_jobs, random_state=random_state, full_speed=full_speed ) data.uns[ds_indices_key] = indices data.uns[ds_distances_key] = distances W = calculate_affinity_matrix(indices, distances) X_fle = calc_force_directed_layout( W, file_name + ".small", n_jobs, target_change_per_node, target_steps, is3d, memory, random_state, ) data.uns["X_" + out_basis + "_small"] = X_fle data.obs["ds_diffmap_selected"] = selected n_components = 2 if not is3d else 3 Y_init = np.zeros((data.shape[0], n_components), dtype=np.float64) Y_init[selected, :] = X_fle Y_init[~selected, :] = net_train_and_predict( X, X_fle, X_full[~selected, :], net_alpha, n_jobs, random_state, verbose=True ) data.obsm["X_" + out_basis + "_pred"] = Y_init key = f"X_{out_basis}" data.obsm[key] = calc_force_directed_layout( W_from_rep(data, rep), file_name, n_jobs, target_change_per_node, polish_target_steps, is3d, memory, random_state, init=Y_init, ) data.register_attr(key, "basis")